【題目】在等差數(shù)列{an}中,a1=﹣2,a12=20. (Ⅰ)求通項(xiàng)an;
(Ⅱ)若 ,求數(shù)列 的前n項(xiàng)和.

【答案】解:(Ⅰ)因?yàn)?an=﹣2+(n﹣1)d,

所以 a12=﹣2+11d=20.

于是 d=2,

所以 an=2n﹣4.

(Ⅱ)因?yàn)閍n=2n﹣4,

所以

于是 ,

,則

顯然數(shù)列{cn}是等比數(shù)列,且 ,公比q=3,

所以數(shù)列 的前n項(xiàng)和


【解析】(Ⅰ)根據(jù)等差數(shù)列的通項(xiàng)公式即可求出公差d,寫出通項(xiàng)公式即可,(Ⅱ)先根據(jù)等差數(shù)列的求和公式化簡(jiǎn)bn,再判斷數(shù)列 為等比數(shù)列,根據(jù)等比數(shù)列的求和公式計(jì)算即可.
【考點(diǎn)精析】通過靈活運(yùn)用等差數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和,掌握通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·陜西)已知橢圓E: (a>b>0)的半焦距為c,原點(diǎn)0到經(jīng)過兩點(diǎn)(c,0),(0,b)的直線的距離為c.
(1)求橢圓E的離心率
(2)如圖,AB是圓M:(x+2)2+(y-1)=的一條直徑,若橢圓E經(jīng)過A,B兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=|x|+ (其中a∈R)的圖像不可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若 b=4c,B=2C (Ⅰ)求cosB;
(Ⅱ)若c=5,點(diǎn)D為邊BC上一點(diǎn),且BD=6,求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,射線l:θ= 與圓C:ρ=2交于點(diǎn)A,橢圓Γ的方程為ρ2= ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系xOy (Ⅰ)求點(diǎn)A的直角坐標(biāo)和橢圓Γ的參數(shù)方程;
(Ⅱ)若E為橢圓Γ的下頂點(diǎn),F(xiàn)為橢圓Γ上任意一點(diǎn),求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:mx2+y2=1(m>0).
(Ⅰ)若橢圓E的右焦點(diǎn)坐標(biāo)為 ,求m的值;
(Ⅱ)由橢圓E上不同三點(diǎn)構(gòu)成的三角形稱為橢圓的內(nèi)接三角形.若以B(0,1)為直角頂點(diǎn)的橢圓E的內(nèi)接等腰直角三角形恰有三個(gè),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓W: (a>b>0)的上下頂點(diǎn)分別為A,B,且點(diǎn)B(0,﹣1).F1 , F2分別為橢圓W的左、右焦點(diǎn),且∠F1BF2=120°.
(Ⅰ)求橢圓W的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)M是橢圓上異于A,B的任意一點(diǎn),過點(diǎn)M作MN⊥y軸于N,E為線段MN的中點(diǎn).直線AE與直線y=﹣1交于點(diǎn)C,G為線段BC的中點(diǎn),O為坐標(biāo)原點(diǎn).求∠OEG的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下莖葉圖記錄了甲、乙兩組各六名學(xué)生在一次數(shù)學(xué)測(cè)試中的成績(jī)(單位:分),規(guī)定85分以上(含85分)為優(yōu)秀,現(xiàn)分別從甲、乙兩組中隨機(jī)選取一名同學(xué)的數(shù)學(xué)成績(jī),則兩人成績(jī)都為優(yōu)秀的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos x的圖象向右平移π個(gè)單位得到函數(shù)y=g(x)的圖象,則g( )=(
A.
B.
C.﹣
D.﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案