【題目】△ABC中的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若 b=4c,B=2C (Ⅰ)求cosB;
(Ⅱ)若c=5,點(diǎn)D為邊BC上一點(diǎn),且BD=6,求△ADC的面積.

【答案】解:(Ⅰ)由題意得B=2C,則sinB=sin2C=2sinCcosC, 又 b=4c,所以cosC= = =
所以cosB=cos2C=2cos2C﹣1= ;
(Ⅱ)因?yàn)閏=5, b=4c,所以b=4 ,
由余弦定理得,b2=a2+c2﹣2accosB
則80=a2+25﹣2× a,
化簡得,a2﹣6a﹣55=0,
解得a=11或a=﹣5(舍去),
由BD=6得,CD=5,
由cosC= 得sinC= = ,
所以△ADC的面積S=
= =10.
【解析】(Ⅰ)由二倍角的正弦公式、正弦定理求出cosC,由二倍角的余弦公式變形求出cosB的值;(Ⅱ)由題意求出b的值,由余弦定理列出方程,化簡后求出a的值,由條件求出CD的值,由cosC和平方關(guān)系求出sinC,代入三角形的面積公式求出△ADC的面積.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解余弦定理的定義的相關(guān)知識(shí),掌握余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),Xn是曲線y=X2n+2+1在點(diǎn)(1,2)處的切線與x軸焦點(diǎn)的橫坐標(biāo)
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)記Tn=....,證明Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{bn}是等比數(shù)列,且滿足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3 , 數(shù)列{ }的前n項(xiàng)和Tn , 若Tn<M對(duì)一切正整數(shù)n都成立,則M的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當(dāng)a=﹣3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點(diǎn)M(2,1),且離心率為 . (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A(0,﹣1),直線l與橢圓C交于P,Q兩點(diǎn),且|AP|=|AQ|,當(dāng)△OPQ(O為坐標(biāo)原點(diǎn))的面積S最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,a1=﹣2,a12=20. (Ⅰ)求通項(xiàng)an
(Ⅱ)若 ,求數(shù)列 的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sinωx(ω>0)的圖象向左平移 個(gè)單位得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關(guān)于直線x=ω對(duì)稱且在區(qū)間(﹣ω,ω)內(nèi)單調(diào)遞增,則ω的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)為奇函數(shù),且在(﹣∞,0)內(nèi)是減函數(shù),f(﹣2)=0,則xf(x)<0的解集為(
A.(﹣1,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2

查看答案和解析>>

同步練習(xí)冊(cè)答案