附:.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828">
【題目】第七屆世界軍人運動會于2019年10月18日至27日(共10天)在武漢召開,人們通過手機、電視等方式關(guān)注運動會盛況.某調(diào)查網(wǎng)站從觀看運動會的觀眾中隨機選出200人,經(jīng)統(tǒng)計這200人中通過傳統(tǒng)的傳媒方式電視端口觀看的人數(shù)與通過新型的傳媒方式端口觀看的人數(shù)之比為.將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組.其中統(tǒng)計通過傳統(tǒng)的傳媒方式電視端口觀看的觀眾得到的頻率分布直方圖如圖所示.
(1)求的值及通過傳統(tǒng)的傳媒方式電視端口觀看的觀眾的平均年齡;
(2)把年齡在第1,2,3組的觀眾稱為青少年組,年齡在第4,5組的觀眾稱為中老年組,若選出的200人中通過新型的傳媒方式端口觀看的中老年人有12人,請完成下面列聯(lián)表,則能否在犯錯誤的概率不超過0.1的前提下認為觀看軍人運動會的方式與年齡有關(guān)?
通過端口觀看軍人運動會 | 通過電視端口觀看軍人運動會 | 合計 | |
青少年 | |||
中老年 | |||
合計 |
span>
附:(其中).
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1),41.5歲;(2)列聯(lián)表答案見解析,不能在犯錯誤的概率不超過0.1的前提下認為觀看軍人運動會的方式與年齡有關(guān).
【解析】
(1)根據(jù)頻率分布直方圖中各小長方形面積和為1列式求得的值,利用組中值求平均數(shù);
(2)先根據(jù)數(shù)據(jù)填寫列聯(lián)表,再根據(jù)公式求卡方,對照數(shù)據(jù)確定可能性.
解:(1)由頻率分布直方圖可得,解得.
所以通過傳統(tǒng)的傳媒方式電視端口觀看的觀眾的平均年齡為
(歲).
(2)由題意得列聯(lián)表:
通過端口觀看軍人運動會 | 通過電視端口觀看軍人運動會 | 合計 | |
青少年 | 28 | 96 | 124 |
中老年 | 12 | 64 | 76 |
合計 | 40 | 160 | 200 |
計算得的觀測值為,
所以不能在犯錯誤的概率不超過0.1的前提下認為觀看軍人運動會的方式與年齡有關(guān).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程及直線的直角坐標(biāo)方程;
(2)求曲線上的點到直線的距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),為常數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)當(dāng)直線與曲線相切時,求出常數(shù)的值;
(2)當(dāng)為曲線上的點,求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了節(jié)約生活用電,計劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標(biāo)準(zhǔn)a,用電量不超過a的部分按平價收費,超出a的部分按議價收費為此,政府調(diào)查了100戶居民的月平均用電量單位:度,以,,,,,分組的頻率分布直方圖如圖所示.
根據(jù)頻率分布直方圖的數(shù)據(jù),求直方圖中x的值并估計該市每戶居民月平均用電量的值;
用頻率估計概率,利用的結(jié)果,假設(shè)該市每戶居民月平均用電量X服從正態(tài)分布
估計該市居民月平均用電量介于度之間的概率;
利用的結(jié)論,從該市所有居民中隨機抽取3戶,記月平均用電量介于度之間的戶數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下命題:
①存在實數(shù),,使得;
②“,”的否定是“存在,”;
③擲一枚質(zhì)地均勻的正方體骰子,向上的點數(shù)不小于3的概率為;
④在閉區(qū)間上取一個隨機數(shù),則的概率為.
其中所有的真命題為________.(填寫所有正確的結(jié)論序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上兩人所得與下三人等。問各得幾何?”其意思是:“已知甲、乙、丙、丁、戊五人分五錢,甲、乙兩人所得之和與丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差數(shù)列。問五人各得多少錢?”(“錢”是古代的一種重量單位)。這個問題中,戊所得為( )
A. 錢 B. 錢 C. 錢 D. 錢
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓與的離心率相等.橢圓的右焦點為F,過點F的直線與橢圓交于A,B兩點,射線與橢圓交于點C,橢圓的右頂點為D.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若的面積為,求直線的方程;
(3)若,求證:四邊形是平行四邊形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“新冠肺炎”疫情的控制需要根據(jù)大數(shù)據(jù)進行分析,并有針對性的采取措施.下圖是甲、乙兩個省份從2月7日到2月13日一周內(nèi)的新增“新冠肺炎”確診人數(shù)的折線圖.根據(jù)圖中甲、乙兩省的數(shù)字特征進行比對,下列說法錯誤的是( )
A.2月7日到2月13日甲省的平均新增“新冠肺炎”確診人數(shù)低于乙省
B.2月7日到2月13日甲省的單日新增“新冠肺炎”確診人數(shù)最大值小于乙省
C.2月7日到2月13日乙省相對甲省的新增“新冠甲省肺炎”確診人數(shù)的波動大
D.后四日(2月10日至13日)乙省每日新增“新冠肺炎”確診人數(shù)均比甲省多
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com