【題目】已知定義域為的奇函數(shù)的圖像是一條連續(xù)不斷的曲線,當(dāng)時,;當(dāng)時,,且,則關(guān)于的不等式的解集為( )
A. B. C. D.
【答案】A
【解析】根據(jù)奇函數(shù)的圖象關(guān)于原點對稱,通過已知條件知道:函數(shù)f(x)在(∞,1),(1,+∞)上單調(diào)遞減;在[1,1]上單調(diào)遞增;
又f(0)=0,f(2)=f(2)=0;
∴若1<x<1時:x+1>0,∴由原不等式得f(x)>0=f(0),根據(jù)函數(shù)f(x)在(1,1)上單調(diào)遞增得0<x<1;
若x1,x+1>0,∴由原不等式得f(x)>0=f(2),根據(jù)函數(shù)f(x)在[1,+∞)上單調(diào)遞減得1x<2;
若x<1,x+1<0,∴由原不等式得f(x)<0=f(2),根據(jù)函數(shù)f(x)在(∞,1)上單調(diào)遞減得2<x<1;
∴原不等式的解集為:(0,2)∪(2,1).
本題選擇A選項.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC,F(xiàn)為CE上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個命題與正整數(shù)有關(guān),若當(dāng)n=k 時該命題成立,那么可推得當(dāng) n=k+1 時該命題也成立,現(xiàn)已知當(dāng) n=4 時該命題不成立,那么可推得( )
A.當(dāng) n=5 時,該命題不成立
B.當(dāng) n=5 時,該命題成立
C.當(dāng) n=3 時,該命題成立
D.當(dāng) n=3 時,該命題不成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的奇函數(shù)的圖像是一條連續(xù)不斷的曲線,當(dāng)時,;當(dāng)時,,且,則關(guān)于的不等式的解集為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)若函數(shù)在處取得極小值,設(shè)此時函數(shù)的極大值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(x+1)n=a0+a1(x-1)+a2(x-1)2+...+an(x-1)n ,(其中 ).
(1)求 a0 及Sn=a1+a2+...+an ;
(2)試比較 Sn 與(n-2)2n+2n2 的大小,并用數(shù)學(xué)歸納法給出證明過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0)的準(zhǔn)線與x軸交于點K,過點K作圓C:(x﹣2)2+y2=1的兩條切線,切點為M,N,|MN|=
(1)求拋物線E的方程
(2)設(shè)A、B是拋物線E上分別位于x軸兩側(cè)的兩個動點,且 = (其中O為坐標(biāo)原點)
①求證:直線AB必過定點,并求出該定點Q的坐標(biāo)
②過點Q作AB的垂線與拋物線交于G、D兩點,求四邊形AGBD面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com