【題目】執(zhí)行如圖所示的程序框圖,如果輸出S=3,那么判斷框內(nèi)應(yīng)填入的條件是(

A.k≤6
B.k≤7
C.k≤8
D.k≤9

【答案】B
【解析】解:根據(jù)程序框圖,運行結(jié)果如下:
S k
第一次循環(huán) log23 3
第二次循環(huán) log23log34 4
第三次循環(huán) log23log34log45 5
第四次循環(huán) log23log34log45log56 6
第五次循環(huán) log23log34log45log56log67 7
第六次循環(huán) log23log34log45log56log67log78=log28=3 8
故如果輸出S=3,那么只能進(jìn)行六次循環(huán),故判斷框內(nèi)應(yīng)填入的條件是k≤7.
故選B.
【考點精析】利用程序框圖對題目進(jìn)行判斷即可得到答案,需要熟知程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,有兩條相交成60°角的直線,交點為.甲、乙分別在上,起初甲離,乙離,后來甲沿的方向,乙沿的方向,同時以的速度步行.求:

1)起初兩人的距離是多少?

2后兩人的距離是多少?

3)什么時候兩人的距離最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型水果超市每天以元/千克的價格從水果基地購進(jìn)若干水果,然后以元/千克的價格出售,若有剩余,則將剩下的水果以元/千克的價格退回水果基地,為了確定進(jìn)貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:

日需求量

頻數(shù)

天記錄的各日需求量的頻率代替各日需求量的概率.

(1)求該超市水果日需求量(單位:千克)的分布列;

(2)若該超市一天購進(jìn)水果千克,記超市當(dāng)天水果獲得的利潤為(單位:元),求的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三角形的邊長為2,將它沿高翻折,使點與點間的距離為1,此時四面體外接球的表面積是________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.

廣告投入/萬元

1

2

3

4

5

銷售收益/萬元

2

3

2

5

7

(Ⅰ)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(Ⅱ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到上表:

表中的數(shù)據(jù)顯示之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;

(Ⅲ)若廣告投入萬元時,實際銷售收益為萬元,求殘差.

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=sinx++sinx-+2cos2ωx,其中ω0,且函數(shù)fx)的最小正周期為π

1)求ω的值;

2)求fx)的單調(diào)增區(qū)間

3)若函數(shù)gx=fx-a在區(qū)間[-,]上有兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于直線以及平面,下面命題中正確的是( )

A. ,則

B. ,則

C. ,則

D. ,且,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對正整數(shù)n,記In={1,2,3…,n},Pn={ |m∈In , k∈In}.
(1)求集合P7中元素的個數(shù);
(2)若Pn的子集A中任意兩個元素之和不是整數(shù)的平方,則稱A為“稀疏集”.求n的最大值,使Pn能分成兩個不相交的稀疏集的并集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)對任意實數(shù)x,y恒有fx+y)=fx+fy)且當(dāng)x0fx)<0

給出下列四個結(jié)論:

f0)=0; fx)為偶函數(shù);

fx)為R上減函數(shù); fx)為R上增函數(shù).

其中正確的結(jié)論是( 。

A. ①③B. ①④C. ②③D. ②④

查看答案和解析>>

同步練習(xí)冊答案