【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷售收益(單位:萬(wàn)元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的.

廣告投入/萬(wàn)元

1

2

3

4

5

銷售收益/萬(wàn)元

2

3

2

5

7

(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(Ⅱ)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到上表:

表中的數(shù)據(jù)顯示之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;

(Ⅲ)若廣告投入萬(wàn)元時(shí),實(shí)際銷售收益為萬(wàn)元,求殘差.

附:,

【答案】(1).

(2).

(3).

【解析】分析(Ⅰ)設(shè)各小長(zhǎng)方形的寬度為,由頻率直方圖各小長(zhǎng)方形的面積總和為,可得

,從而可得結(jié)果;(Ⅱ)利用平均數(shù)公式求出平均數(shù)、利用樣本中心的 性質(zhì)結(jié)合公司可求得回歸系數(shù),從而可寫出線性回歸方程;(Ⅲ)計(jì)算當(dāng)時(shí),銷售收益預(yù)測(cè)值,再求殘差值.

詳解(Ⅰ)設(shè)各小長(zhǎng)方形的寬度為,由頻率直方圖各小長(zhǎng)方形的面積總和為,可知

,

.

(Ⅱ)由題意,可知,,

,

根據(jù)公式,可求得,,

所以關(guān)于的回歸方程為

.

(Ⅲ)當(dāng)時(shí),銷售收益預(yù)測(cè)值(萬(wàn)元),又實(shí)際銷售收益為萬(wàn)元,所以殘差

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.

(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲與乙午覺(jué)醒來(lái)后,發(fā)現(xiàn)自己的手表因故停止轉(zhuǎn)動(dòng),于是他們想借助收音機(jī),利用電臺(tái)整點(diǎn)報(bào)時(shí)確認(rèn)時(shí)間.

(1)求甲等待的時(shí)間不多于10分鐘的概率;

(2)求甲比乙多等待10分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的直角坐標(biāo)方程;

2)若有且僅有三個(gè)公共點(diǎn),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段軸的交點(diǎn)滿足.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)圓是以為直徑的圓,一直線與之相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng)且滿足時(shí),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸出S=3,那么判斷框內(nèi)應(yīng)填入的條件是(

A.k≤6
B.k≤7
C.k≤8
D.k≤9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面上, ,| |=| |=1, = + .若| |< ,則| |的取值范圍是(
A.(0, ]
B.( ]
C.( , ]
D.( , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形ABC中,角A、B、C所對(duì)邊分別為a,b,c,且

(1)若cosA=,求sinC的值;

(2)若b=,a=3c,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某游樂(lè)場(chǎng)有一個(gè)半徑為50米的摩天輪,該摩天輪的圓心距離地面52米,摩天輪逆時(shí)針勻速轉(zhuǎn)動(dòng),每轉(zhuǎn)動(dòng)一圈需要分鐘.若游客從最低點(diǎn)處登上摩天輪,從摩天輪開(kāi)始轉(zhuǎn)動(dòng)計(jì)時(shí).

(I)求游客與地面的距離(米)與摩天輪轉(zhuǎn)動(dòng)時(shí)間(分)的函數(shù)關(guān)系式;

(Ⅱ)摩天輪轉(zhuǎn)動(dòng)一圈的過(guò)程中,游客的高度在距地面77米及以上的時(shí)間不少于4分鐘,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案