【題目】在平面上, ⊥ ,| |=| |=1, = + .若| |< ,則| |的取值范圍是( )
A.(0, ]
B.( , ]
C.( , ]
D.( , ]
【答案】D
【解析】解:根據(jù)條件知A,B1 , P,B2構(gòu)成一個矩形AB1PB2 , 以AB1 , AB2所在直線為坐標軸建立直角坐標系,設(shè)|AB1|=a,|AB2|=b,點O的坐標為(x,y),則點P的坐標為(a,b),
由| |=| |=1,得 ,則
∵| |< ,∴
∴
∴
∵(x﹣a)2+y2=1,∴y2=1﹣(x﹣a)2≤1,
∴y2≤1
同理x2≤1
∴x2+y2≤2②
由①②知 ,
∵| |= ,∴ <| |≤
故選D.
【考點精析】利用平面向量的基本定理及其意義對題目進行判斷即可得到答案,需要熟知如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)、,使.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩位射擊運動員在一次射擊測試中各射靶7次,每次命中的環(huán)數(shù)如下:
甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8
則下列判斷正確的是( )
A. 甲射擊的平均成績比乙好 B. 甲射擊的成績的眾數(shù)小于乙射擊的成績的眾數(shù)
C. 乙射擊的平均成績比甲好 D. 甲射擊的成績的極差大于乙射擊的成績的極差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家邊防安全條例規(guī)定:當外輪與我國海岸線的距離小于或等于海里時,就會被警告.如圖,設(shè),是海岸線上距離海里的兩個觀察站,滿足,一艘外輪在點滿足,.
(1),滿足什么關(guān)系時,就該向外輪發(fā)出警告令其退出我國海域?
(2)當時,間處于什么范圍內(nèi)可以避免使外輪進入被警告區(qū)域?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.
廣告投入/萬元 | 1 | 2 | 3 | 4 | 5 |
銷售收益/萬元 | 2 | 3 | 2 | 5 | 7 |
(Ⅰ)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(Ⅱ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到上表:
表中的數(shù)據(jù)顯示與之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;
(Ⅲ)若廣告投入萬元時,實際銷售收益為萬元,求殘差.
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線是一條居民平時散步的小道,小道兩旁是空地,當?shù)卣疄榱素S富居民的業(yè)余生活,要在小道兩旁規(guī)劃出兩地來修建休閑活動場所,已知空地和規(guī)劃的兩塊用地(陰影區(qū)域)都是矩形,,,,若以所在直線為軸,為原點,建立如圖平面直角坐標系,則曲線的方程為,記,規(guī)劃的兩塊用地的面積之和為.(單位:)
(1)求關(guān)于的函數(shù);
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD= ,F(xiàn)為PC的中點,AF⊥PB.
(1)求PA的長;
(2)求二面角B﹣AF﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)監(jiān)測,在海濱某城市附近的海面有一臺風(fēng). 臺風(fēng)中心位于城市的東偏南方向、距離城市的海面處,并以的速度向西偏北方向移動(如圖示).如果臺風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺風(fēng)移動的方向與速度不變,那么該城市受臺風(fēng)侵襲的時長為_____ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018河南安陽市高三一模】如下圖,在平面直角坐標系中,直線與直線之間的陰影部分即為,區(qū)域中動點到的距離之積為1.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)動直線穿過區(qū)域,分別交直線于兩點,若直線與軌跡有且只有一個公共點,求證: 的面積恒為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com