【題目】如圖,某游樂場有一個半徑為50米的摩天輪,該摩天輪的圓心距離地面52米,摩天輪逆時針勻速轉(zhuǎn)動,每轉(zhuǎn)動一圈需要分鐘.若游客從最低點處登上摩天輪,從摩天輪開始轉(zhuǎn)動計時.

(I)求游客與地面的距離(米)與摩天輪轉(zhuǎn)動時間(分)的函數(shù)關(guān)系式;

(Ⅱ)摩天輪轉(zhuǎn)動一圈的過程中,游客的高度在距地面77米及以上的時間不少于4分鐘,求的最小值.

【答案】(I),為參數(shù)).(Ⅱ)12.

【解析】

(I)設(shè),根據(jù)最高點和最低點可得Ab,由周期求,再由特殊點求值,即得函數(shù)解析式;(Ⅱ)根據(jù)題意列出滿足條件的不等式,即可解得結(jié)果.

(I)由題意可設(shè),,).

游客最高距地面,最低距地面,

.

又函數(shù)周期為,,

.

時,,,即,可取,

為參數(shù)).

(Ⅱ)依題意可知,

.

不妨取第一圈,可得,,

持續(xù)時間為,即分鐘.

的最小值為12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.

廣告投入/萬元

1

2

3

4

5

銷售收益/萬元

2

3

2

5

7

(Ⅰ)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(Ⅱ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到上表:

表中的數(shù)據(jù)顯示之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;

(Ⅲ)若廣告投入萬元時,實際銷售收益為萬元,求殘差.

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)監(jiān)測,在海濱某城市附近的海面有一臺風(fēng). 臺風(fēng)中心位于城市的東偏南方向、距離城市的海面處,并以的速度向西偏北方向移動(如圖示).如果臺風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺風(fēng)移動的方向與速度不變,那么該城市受臺風(fēng)侵襲的時長為_____ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將100名髙一新生分成水平相同的甲、乙兩個平行班”,每班50.陳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個班級進(jìn)行教改實驗.為了解教學(xué)效果,期末考試后,陳老師對甲、乙兩個班級的學(xué)生成績進(jìn)行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為成績優(yōu)秀

 

0.05

0.01

0.001

 

3.841

6.635

10.828

(I)從乙班隨機抽取2名學(xué)生的成績,成績優(yōu)秀的個數(shù)為,求的分布列和數(shù)學(xué)期望

(II)根據(jù)頻率分布直方圖填寫下面2 x2列聯(lián)表,并判斷是否有95%的把握認(rèn)為:“成績優(yōu)秀與教學(xué)方式有關(guān).

甲班A方式)

乙班(B方式)

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面上,點,點在單位圓上且 .

(1)若點,求的值:

(2)若,四邊形的面積用表示,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)對任意實數(shù)x,y恒有fx+y)=fx+fy)且當(dāng)x0,fx)<0

給出下列四個結(jié)論:

f0)=0; fx)為偶函數(shù);

fx)為R上減函數(shù); fx)為R上增函數(shù).

其中正確的結(jié)論是( 。

A. ①③B. ①④C. ②③D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018河南安陽市高三一模如下圖在平面直角坐標(biāo)系,直線與直線之間的陰影部分即為區(qū)域中動點的距離之積為1

)求點的軌跡的方程;

)動直線穿過區(qū)域,分別交直線兩點若直線與軌跡有且只有一個公共點,求證 的面積恒為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)fx)=aa為常數(shù)).

1)求a的值;

2)若函數(shù)gx)=|2x+1fx|k2個零點,求實數(shù)k的取值范圍;

3)若x[2,﹣1]時,不等式fx恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寶寶的健康成長是媽媽們最關(guān)心的問題,父母親為嬰兒選擇什么品牌的奶粉一直以來都是育嬰中的一個重要話題,為了解過程奶粉的知名度和消費者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:

(1)根據(jù)給出的這兩年銷量的管狀圖,對該超市這兩年品牌奶粉銷量的前五強進(jìn)行排名;

(2)分別計算這5個品牌奶粉2016年所占總銷量(僅指這5個品牌奶粉的總銷量)的百分比(百分?jǐn)?shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號內(nèi);

(3)已知該超市2014年飛鶴奶粉的銷量為(單位:罐),試以3年的銷量得出銷量關(guān)于年份的線性回歸方程,并據(jù)此預(yù)測2017年該超市飛鶴奶粉的銷量.

相關(guān)公式:

查看答案和解析>>

同步練習(xí)冊答案