【題目】甲與乙午覺(jué)醒來(lái)后,發(fā)現(xiàn)自己的手表因故停止轉(zhuǎn)動(dòng),于是他們想借助收音機(jī),利用電臺(tái)整點(diǎn)報(bào)時(shí)確認(rèn)時(shí)間.

(1)求甲等待的時(shí)間不多于10分鐘的概率;

(2)求甲比乙多等待10分鐘以上的概率.

【答案】(1) (2)

【解析】

1)直接由幾何概型中的長(zhǎng)度型概率計(jì)算公式求解。

2)設(shè)甲需要等待的時(shí)間為,乙需要等待的時(shí)間為,由已知列不等式組,利用幾何概型中的面積型概率計(jì)算公式求解。

解:(1)因?yàn)殡娕_(tái)每隔1小時(shí)報(bào)時(shí)一次,

甲在之間任何一個(gè)時(shí)刻打開(kāi)收音機(jī)是等可能的,

所以他在哪個(gè)時(shí)間段打開(kāi)收音機(jī)的概率只與該時(shí)間段的長(zhǎng)度有關(guān),

而與該時(shí)間段的位置無(wú)關(guān),符合幾何概型的條件.

設(shè)事件為“甲等待的時(shí)間不多于10分鐘”,

則事件恰好是打開(kāi)收音機(jī)的時(shí)刻位于時(shí)間段內(nèi),

因此由幾何概型的概率公式得

所以“甲等待的時(shí)間不多于10分鐘“的概率為.

(2)因?yàn)榧、乙兩人起床的時(shí)間是任意的,

所以所求事件是一個(gè)與兩個(gè)變量相關(guān)的幾何概型,且為面積型.

設(shè)甲需要等待的時(shí)間為,乙需要等待的時(shí)間為(10分鐘為一個(gè)長(zhǎng)度單位).

則由已知可得,對(duì)應(yīng)的基本事件空間為.

甲比乙多等待10分鐘以上對(duì)應(yīng)的事件為.

在平面直角坐標(biāo)系中作出兩個(gè)不等式組所表示的平面區(qū)域,如圖所示.

顯然表示一個(gè)邊長(zhǎng)為6的正方形的內(nèi)部及線段,

其面積.表示的是腰長(zhǎng)為5的等腰直角三角形的內(nèi)部及線段,

其面積,故所求事件的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若動(dòng)點(diǎn)為橢圓外一點(diǎn),且點(diǎn)到橢圓的兩條切線相互垂直,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩位射擊運(yùn)動(dòng)員在一次射擊測(cè)試中各射靶7次,每次命中的環(huán)數(shù)如下:

甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8

則下列判斷正確的是( 。

A. 甲射擊的平均成績(jī)比乙好 B. 甲射擊的成績(jī)的眾數(shù)小于乙射擊的成績(jī)的眾數(shù)

C. 乙射擊的平均成績(jī)比甲好 D. 甲射擊的成績(jī)的極差大于乙射擊的成績(jī)的極差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一位數(shù)學(xué)老師在黑板上寫了三個(gè)向量,,,其中,都是給定的整數(shù).老師問(wèn)三位學(xué)生這三個(gè)向量的關(guān)系,甲回答:“平行,且垂直”,乙回答:“平行”,丙回答:“不垂直也不平行”,最后老師發(fā)現(xiàn)只有一位學(xué)生判斷正確,由此猜測(cè),的值不可能為( )

A. B. , C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是(

A.34
B.55
C.78
D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型水果超市每天以元/千克的價(jià)格從水果基地購(gòu)進(jìn)若干水果,然后以元/千克的價(jià)格出售,若有剩余,則將剩下的水果以元/千克的價(jià)格退回水果基地,為了確定進(jìn)貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:

日需求量

頻數(shù)

天記錄的各日需求量的頻率代替各日需求量的概率.

(1)求該超市水果日需求量(單位:千克)的分布列;

(2)若該超市一天購(gòu)進(jìn)水果千克,記超市當(dāng)天水果獲得的利潤(rùn)為(單位:元),求的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家邊防安全條例規(guī)定:當(dāng)外輪與我國(guó)海岸線的距離小于或等于海里時(shí),就會(huì)被警告.如圖,設(shè)是海岸線上距離海里的兩個(gè)觀察站,滿足,一艘外輪在點(diǎn)滿足,.

(1)滿足什么關(guān)系時(shí),就該向外輪發(fā)出警告令其退出我國(guó)海域?

(2)當(dāng)時(shí),間處于什么范圍內(nèi)可以避免使外輪進(jìn)入被警告區(qū)域?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷售收益(單位:萬(wàn)元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的.

廣告投入/萬(wàn)元

1

2

3

4

5

銷售收益/萬(wàn)元

2

3

2

5

7

(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(Ⅱ)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到上表:

表中的數(shù)據(jù)顯示之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;

(Ⅲ)若廣告投入萬(wàn)元時(shí),實(shí)際銷售收益為萬(wàn)元,求殘差.

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)監(jiān)測(cè),在海濱某城市附近的海面有一臺(tái)風(fēng). 臺(tái)風(fēng)中心位于城市的東偏南方向、距離城市的海面處,并以的速度向西偏北方向移動(dòng)(如圖示).如果臺(tái)風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺(tái)風(fēng)移動(dòng)的方向與速度不變,那么該城市受臺(tái)風(fēng)侵襲的時(shí)長(zhǎng)為_____ .

查看答案和解析>>

同步練習(xí)冊(cè)答案