【題目】如圖,矩形中,,以為折痕把折起,使點到達點的位置.

(1)若,求三棱錐體積的最大值;

(2)若,證明:平面平面

【答案】(1) ; (2)證明見解析

【解析】

1)過PPOBDO,求出PO,當(dāng)PO⊥平面ABD時,三棱錐PABD體積最大,由此能求出三棱錐PABD體積的最大值.

2)推導(dǎo)出PDPBPAPB,從而PB⊥平面PAD,推導(dǎo)出AD⊥平面PAB,由此能證明平面PAB⊥平面ABD

1)過PPOBDO,則POBDPBPD,

解得PO,

當(dāng)PO⊥平面ABD時,三棱錐PABD體積最大,

∴三棱錐PABD體積的最大值為:

VPABD

2)在PBD中,PDPB,

PAPB,PAPBP,

PA,PD平面PAD

PB⊥平面PAD,

PBAD,又ABAD,ABPBB,

AD⊥平面PAB

AD平面ABD,∴平面PAB⊥平面ABD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為 (為參數(shù),).

(1)當(dāng)時,若曲線上存在兩點關(guān)于點成中心對稱,求直線的斜率;

(2)在以原點為極點,軸正半軸為極軸的極坐標系中,極坐標方程為的直線與曲線相交于兩點,若,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列和等比數(shù)列中, ,,項和.

(1)若 ,求實數(shù)的值;

(2)是否存在正整數(shù),使得數(shù)列的所有項都在數(shù)列中?若存在,求出所有的,若不存在,說明理由;

(3)是否存在正實數(shù),使得數(shù)列中至少有三項在數(shù)列中,但中的項不都在數(shù)列中?若存在,求出一個可能的的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為5.

(1)求該拋物線的方程;

(2)已知拋物線上一點,過點作拋物線的兩條弦,且,判斷直線是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若對任意,都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中表示中的最小者.下列說法錯誤的是

A. 函數(shù)為偶函數(shù) B. 時,有

C. 時, D. 時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A33),B5,–1)到直線l的距離相等,且直線l過點P0,1),則直線l的方程(

A.y=1B.2x+y–1=0

C.2x+y–1=02x+y+1=0D.y=12x+y–1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校有高中學(xué)生500人,其中男生320人,女生180.有人為了獲得該校全體高中學(xué)生的身高信息,采用分層抽樣的方法抽取樣本,并觀測樣本的指標值(單位:cm),計算得男生樣本的均值為173.5,方差為17,女生樣本的均值為163.83,方差為30.03.

1)根據(jù)以上信息,能夠計算出總樣本的均值和方差嗎?為什么?

2)如果已知男、女樣本量按比例分配,你能計算出總樣本的均值和方差各為多少嗎?

3)如果已知男、女的樣本量都是25,你能計算出總樣本的均值和方差各為多少嗎?它們分別作為總體均值和方差的估計合適嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的極坐標方程和曲線的直角坐標方程;

(2)若直線與曲線交于兩點,求.

查看答案和解析>>

同步練習(xí)冊答案