(本小題滿分12分)已知橢圓:()的離心率為,過右焦點且斜率為1的直線交橢圓于兩點,為弦的中點。
(1)求直線(為坐標(biāo)原點)的斜率;
(2)設(shè)橢圓上任意一點,且,求的最大值和最小值.
(1), (2)
解析試題分析:(1)設(shè)橢圓的焦距為2c,因為,所以有,故有。從而橢圓C的方程可化為: ① …………2分
易知右焦點F的坐標(biāo)為(),
據(jù)題意有AB所在的直線方程為: ② …………4分
由①,②有: ③
設(shè),弦AB的中點,由③及韋達定理有:
所以,即為所求。 …………6分
(2)設(shè),由1)中各點的坐標(biāo)有:
,所以。
又點在橢圓C上,所以有整理為。 ④………8分
由③有:。
⑤
又A﹑B在橢圓上,故有 ⑥
將⑤,⑥代入④可得:。 …………10分
,故有
所以, …………12分
考點:本題考查了直線與橢圓的位置關(guān)系
點評:圓錐曲線的問題一般來說計算量大,對運算能力要求很高,尋求簡潔、合理的運算途徑很重要,在解答時注意以下的轉(zhuǎn)化:⑴若直線與圓錐曲線有兩個交點,對待交點坐標(biāo)是“設(shè)而不求”的原則,要注意應(yīng)用韋達定理處理這類問題 ; ⑵與弦的重點有關(guān)問題求解常用方法一韋達定理法 二 點差法;⑶平面向量與解析幾何綜合題,遵循的是平面向量坐標(biāo)化,應(yīng)用的是平面向量坐標(biāo)運算法則還有兩向量平行、垂直來解決問題,這就要求同學(xué)們在基本概念、基本方法、基本能力上下功夫.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,以軸為始邊作兩個銳角,它們的終邊分別交單位圓于兩點.已知兩點的橫坐標(biāo)分別是,.
(1)求的值;(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設(shè)點.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;
(3)過原點的直線交橢圓于點,求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)已知橢圓的左、右焦點分別為F1、F2,其中F2也是拋物線的焦點,M是C1與C2在第一象限的交點,且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)己知、、是橢圓:()上的三點,其中點的坐標(biāo)為,過橢圓的中心,且,。
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線(斜率存在時)與橢圓交于兩點,,設(shè)為橢圓與 軸負半軸的交點,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線頂點在原點,焦點在x軸上,又知此拋物線上一點A(4,m)到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點A、B,且AB中點橫坐標(biāo)為2,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓:的右焦點與拋物線的焦點重合,過作與軸垂直的直線與橢圓交于兩點,與拋物線交于兩點,且。
(1)求橢圓的方程;
(2)若過點的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿足
為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知橢圓的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A、B兩點,點P(0,1),且|PA|=|PB|,求直線的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com