方程的曲線是焦點(diǎn)在上的橢圓 ,求的取值范圍

解析試題分析:方程化為表示焦點(diǎn)在軸上的橢圓,所以y的分母較大
考點(diǎn):橢圓標(biāo)準(zhǔn)方程及焦點(diǎn)位置的判定
點(diǎn)評(píng):要判定橢圓的焦點(diǎn)位置,首先將橢圓整理為其標(biāo)準(zhǔn)方程,再看的分母哪個(gè)更大一些,焦點(diǎn)就在相應(yīng)的軸上

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A(,),B(,)是函數(shù)的圖象上的任意兩點(diǎn)(可以重合),點(diǎn)M在直線上,且.
(1)求+的值及+的值
(2)已知,當(dāng)時(shí),+++,求;
(3)在(2)的條件下,設(shè)=,為數(shù)列{}的前項(xiàng)和,若存在正整數(shù)、,
使得不等式成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線經(jīng)過拋物線的焦點(diǎn)F,且與拋物線相交于A、B兩點(diǎn).

(1)若,求點(diǎn)A的坐標(biāo);
(2)若直線的傾斜角為,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

雙曲線與橢圓有相同的焦點(diǎn),且該雙曲線
的漸近線方程為
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2) 過該雙曲線的右焦點(diǎn)作斜率不為零的直線與此雙曲線的左,右兩支分別交于點(diǎn),
設(shè),當(dāng)軸上的點(diǎn)滿足時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線實(shí)軸在軸,且實(shí)軸長為2,離心率,  L是過定點(diǎn)的直線.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)判斷L能否與雙曲線交于,兩點(diǎn),且線段恰好以點(diǎn)為中點(diǎn),若存在,求出直線L的方程,若不存,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個(gè)點(diǎn),度量點(diǎn)的坐標(biāo),如圖.

(Ⅰ)拖動(dòng)點(diǎn),發(fā)現(xiàn)當(dāng)時(shí),,試求拋物線的方程;
(Ⅱ)設(shè)拋物線的頂點(diǎn)為,焦點(diǎn)為,構(gòu)造直線交拋物線于不同兩點(diǎn)、,構(gòu)造直線分別交準(zhǔn)線于、兩點(diǎn),構(gòu)造直線.經(jīng)觀察得:沿著拋物線,無論怎樣拖動(dòng)點(diǎn),恒有.請(qǐng)你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)”改變?yōu)槠渌岸c(diǎn)”,其余條件不變,發(fā)現(xiàn)“不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請(qǐng)寫出相應(yīng)的正確命題;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線,為焦點(diǎn),為準(zhǔn)線,準(zhǔn)線與軸交點(diǎn)為
(1)求;
(2)過點(diǎn)的直線與拋物線交于兩點(diǎn),直線與拋物線交于點(diǎn).
①設(shè)三點(diǎn)的橫坐標(biāo)分別為,計(jì)算:的值;
②若直線與拋物線交于點(diǎn),求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共14分)
已知橢圓C:,左焦點(diǎn),且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點(diǎn)不是左、右頂點(diǎn)),且以為直徑的圓經(jīng)過橢圓C的右頂點(diǎn)A.   求證:直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓)的離心率為,過右焦點(diǎn)且斜率為1的直線交橢圓兩點(diǎn),為弦的中點(diǎn)。
(1)求直線為坐標(biāo)原點(diǎn))的斜率;
(2)設(shè)橢圓上任意一點(diǎn),且,求的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案