【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為.以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系并說明理由;

(Ⅱ)設(shè)直線與曲線的兩個交點(diǎn)分別為,求的值.

【答案】點(diǎn)在直線上;

【解析】試題分析:(Ⅰ)直線 ,亦即,得直線的直角坐標(biāo)方程為,即可得到結(jié)論;

(Ⅱ)由題意,將直線的參數(shù)方程代入曲線的普通方程,得,得,再由,即可求解.

試題解析:

(Ⅰ)點(diǎn)在直線上,理由如下:

直線 ,即,亦即, 直線的直角坐標(biāo)方程為,易知點(diǎn)在直線上.

(Ⅱ)由題意,可得直線的參數(shù)方程為,曲線的普通方程為.將直線的參數(shù)方程代入曲線的普通方程,得 ,設(shè)兩根為 , ,故異號, ,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記全集U={1,2,3,4,5,6,7,8},A={1,2,3,5},B={2,4,6},則圖中陰影部分所表示的集合是(
A.{4,6,7,8}
B.{2}
C.{7,8}
D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x),當(dāng)x≥0時,f(x)=x2﹣4x
(1)求f(﹣2)的值;
(2)當(dāng)x<0時,求f(x)的解析式;
(3)設(shè)函數(shù)f(x)在[t﹣1,t+1](t>1)上的最大值為g(t),求g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

I)若,求函數(shù)的單調(diào)區(qū)間;(其中是自然對數(shù)的底數(shù))

II)設(shè)函數(shù),當(dāng)時,曲線有兩個交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)f(x)的定義域?yàn)镽,且在(﹣∞,0)上是增函數(shù),則f(﹣ )與f(a2﹣a+1)(a∈R)的大小關(guān)系是(
A.f(﹣ )≤f(a2﹣a+1)
B.f(﹣ )≥f(a2﹣a+1)?
C.f(﹣ )<f(a2﹣a+1)
D.f(﹣ )>f(a2﹣a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ≤a≤1,若函數(shù)f(x)=ax2﹣2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)﹣N(a).
(1)求g(a)的函數(shù)表達(dá)式;
(2)判斷函數(shù)g(a)在區(qū)間[ ,1]上的單調(diào)性,并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017開封高三模擬理】如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E為AB的中點(diǎn).將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點(diǎn)P,則三棱錐P-DCE的外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率,過橢圓的左焦點(diǎn)且傾斜角為的直線與圓相交所得弦的長度為1.

(1)求橢圓的方程;

(2)若直線交橢圓于不同的兩點(diǎn),設(shè), ,其中為坐標(biāo)原點(diǎn).當(dāng)以線段為直徑的圓恰好過點(diǎn)時,求證: 的面積為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】宋元時期杰出的數(shù)學(xué)家朱世杰在其數(shù)學(xué)巨著《四元玉鑒》卷中茭草形段第一個問題今有茭草六百八十束,欲令落一形埵(同垛)之.問底子(每層三角形邊茭草束數(shù),等價于層數(shù))幾何?中探討了垛枳術(shù)中的落一形垛(落一形即是指頂上1束,下一層3束,再下一層6束,,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層茭草束數(shù)),則本問題中三角垛底層茭草總束數(shù)為

查看答案和解析>>

同步練習(xí)冊答案