【題目】為了了解青少年的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)30名青少年進(jìn)行調(diào)查,得到如下列聯(lián)表:

不常喝

計(jì)

2

不肥胖

18

計(jì)

30

已知從這30名青少年中隨機(jī)抽取1名,抽到肥胖青少年的概率為

(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;(2)是否有99.5%的把握認(rèn)為青少年的肥胖與常喝碳酸飲料有關(guān)?

獨(dú)立性檢驗(yàn)臨界值表:

P(K2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中n=a+b+c+d

【答案】(1)見(jiàn)解析(2)有99.5%的把握認(rèn)為青少年的肥胖與常喝碳酸飲料有關(guān)

【解析】試題分析:(1)設(shè)常喝碳酸飲料肥胖的學(xué)生有x人,求出x的值,填表即可;

(2)計(jì)算觀測(cè)值K2,對(duì)照數(shù)表得出結(jié)論;

試題解析:解:(1)設(shè)常喝碳酸飲料且肥胖的青少年人數(shù)為x,則=解得x=6

列聯(lián)表如下:

不常喝

計(jì)

6

2

8

不肥胖

4

18

22

計(jì)

10

20

30

(2)由(1)中列聯(lián)表中的數(shù)據(jù)可求得隨機(jī)變量k2的觀測(cè)值:

k=≈8.523>7.789

因此有99.5%的把握認(rèn)為青少年的肥胖與常喝碳酸飲料有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn-an}為等比數(shù)列.

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如表的列聯(lián)表:

算得,K2≈7.8.見(jiàn)附表:參照附表,得到的正確結(jié)論是( 。

總計(jì)

愛(ài)好

40

20

60

不愛(ài)好

20

30

50

總計(jì)

60

50

110

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

A. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

B. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

C. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)人的某一特征(如眼睛的大小)是由他的一對(duì)基因所決定,d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個(gè)基因,假定父母都是混合性,問(wèn):

(1)1個(gè)孩子顯露顯性特征的概率是多少?

(2)“該父母生的2個(gè)孩子中至少有1個(gè)顯露顯性特征”,這種說(shuō)法正確嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線與直線垂直.(注: 為自然對(duì)數(shù)的底數(shù))

(1)求的值;

(2)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;

(3)求證:當(dāng)時(shí), 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一根水平放置的長(zhǎng)方體形枕木的安全負(fù)荷與它的寬度成正比,與它的厚度的平方成正比,與它的長(zhǎng)度的平方成反比.

(Ⅰ)將此枕木翻轉(zhuǎn)90°(即寬度變?yōu)楹穸龋,枕木的安全?fù)荷會(huì)如何變化?為什么?(設(shè)翻轉(zhuǎn)前后枕木的安全負(fù)荷分別為且翻轉(zhuǎn)前后的比例系數(shù)相同都為

(Ⅱ)現(xiàn)有一根橫斷面為半圓(已知半圓的半徑為)的木材,用它來(lái)截取成長(zhǎng)方體形的枕木,其長(zhǎng)度為10,問(wèn)截取枕木的厚度為多少時(shí),可使安全負(fù)荷最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,過(guò)、三點(diǎn)的圓的圓心坐標(biāo)為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線為常數(shù), )與橢圓交于不同的兩點(diǎn)

(。┊(dāng)直線過(guò),且時(shí),求直線的方程;

(ⅱ)當(dāng)坐標(biāo)原點(diǎn)到直線的距離為,且面積為時(shí),求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在高中學(xué)習(xí)過(guò)程中,同學(xué)們經(jīng)常這樣說(shuō):“如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒(méi)什么問(wèn)題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績(jī),如下表:

編號(hào)

成績(jī)

1

2

3

4

5

物理(

90

85

74

68

63

數(shù)學(xué)(

130

125

110

95

90

(1)求數(shù)學(xué)成績(jī)關(guān)于物理成績(jī)的線性回歸方程精確到),若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);

(2)要從抽取的五位學(xué)生中隨機(jī)選出三位參加一項(xiàng)知識(shí)競(jìng)賽,以表示選中的學(xué)生的數(shù)學(xué)成績(jī)高于100分的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

(參數(shù)公式: , .)

參考數(shù)據(jù): ,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, , , 平面.

(1)求證: 平面;

(2)若為線段的中點(diǎn),且過(guò)三點(diǎn)的平面與線段交于點(diǎn),確定點(diǎn)的位置,說(shuō)明理由;并求三棱錐的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案