【題目】如圖,正方體ABCD﹣A′B′C′D′中, .設點F在線段CC'上,直線EF與平面A'BD所成的角為α,則sinα的取值范圍是( )

A.
B.
C.
D.

【答案】D
【解析】解:設正方體ABCD﹣A′B′C′D′中棱長為2,
以D為原點,DA為x軸,DC為y軸,DD′為z軸,建立空間直角坐標系,
D(0,0,0),B(2,2,0),A′(2,0,2),
=(2,2,0), =(2,0,2),
設平面BDA′的法向量 =(x,y,z),
,取x=1,得 ,
E(1,1,0),設CF=t,(0≤t≤2),
當t=0時,F(xiàn)(0,2,0), =(﹣1,1,0),
sinα= = = ;
當t=1時,F(xiàn)(0,2,1), =(﹣1,1,1),
sinα= = =1;
當t=2時,F(xiàn)(0,2,2), =(﹣1,1,2),
sinα= = =
∴sinα的取值范圍是[ ,1].
故選:D.

【考點精析】掌握空間角的異面直線所成的角是解答本題的根本,需要知道已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d不等于0,Sn是其前n項和,給出下列命題:
①給定n(n≥2,且n∈N*),對于一切k∈N*(k<n),都有ank+an+k=2an成立;
②存在k∈N* , 使得ak﹣ak+1與a2k+1﹣a2k3同號;
③若d>0.且S3=S8 , 則S5與S6都是數(shù)列{Sn}中的最小項
④點(1, ),(2, ),(3, ),…,(n, )(n∈N*),…,在同一條直線上.
其中正確命題的序號是 . (把你認為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5],
(1)當a=﹣1時,求函數(shù)的最大值和最小值;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正數(shù)數(shù)列{xn}滿足x1= ,xn+1= ,n∈N*
(1)求x2 , x4 , x6
(2)猜想數(shù)列{x2n}的單調(diào)性,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y=﹣4x2+8x﹣3,
(1)指出圖象的開口方向、對稱軸方程、頂點坐標;
(2)求函數(shù)的最大值或最小值;
(3)寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ex , g(x)=x+1.
(1)證明:f(x)≥g(x);
(2)求y=f(x),y=g(x)與x=﹣1所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是
①任意x∈R,都有3x>2x;
②若a>0,且a≠1,M>0,N>0,則有l(wèi)oga(M+N)=logaMlogaN;
的最大值為1;
④在同一坐標系中,y=2x 的圖象關于y軸對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (0<x<π),g(x)=(x﹣1)lnx+m(m∈R)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:1是g(x)的唯一極小值點;
(Ⅲ)若存在a,b∈(0,π),滿足f(a)=g(b),求m的取值范圍.(只需寫出結論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】形如y= (c>0,b>0)的函數(shù)因其圖象類似于漢字中的“囧”字,故我們把其生動地稱為“囧函數(shù)”.若函數(shù)f(x)=loga(x2+x+1)(a>0,a≠1)有最小值,則當c,b的值分別為方程x2+y2﹣2x﹣2y+2=0中的x,y時的“囧函數(shù)”與函數(shù)y=loga|x|的圖象交點個數(shù)為(
A.1
B.2
C.4
D.6

查看答案和解析>>

同步練習冊答案