【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運(yùn)營公司為了解某地區(qū)用戶對該公司所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了100名用戶,得到用戶的滿意度評分(滿分10分),現(xiàn)將評分分為5組,如下表:
組別 | 一 | 二 | 三 | 四 | 五 |
滿意度評分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
頻數(shù) | 5 | 10 | a | 32 | 16 |
頻率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估計用戶的滿意度評分的平均數(shù);
(3)若從這100名用戶中隨機(jī)抽取25人,估計滿意度評分低于6分的人數(shù)為多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;
(2)若,求函數(shù)的單調(diào)遞減區(qū)間;
(3)當(dāng)時,若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知橢圓的上下兩個焦點(diǎn)分別為,且,橢圓過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的一個頂點(diǎn)為,直線交橢圓于另一個點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于區(qū)間,若函數(shù)同時滿足:①在上是單調(diào)函數(shù);②函數(shù)的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.(1)寫出函數(shù)的一個“保值”區(qū)間為_____________;(2)若函數(shù)存在“保值”區(qū)間,則實(shí)數(shù)的取值范圍為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實(shí)數(shù),用表示不超過的最大整數(shù).
(1)若函數(shù),求的值;
(2)若函數(shù),求的值域;
(3)若存在且,使得,則稱函數(shù)是函數(shù),若函數(shù) 是函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) 在橢圓:上,且橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的左、右頂點(diǎn)分別為、,點(diǎn)是軸上任意一點(diǎn)(異于點(diǎn)),過點(diǎn)的直線與橢圓相交于兩點(diǎn).
①若點(diǎn)的坐標(biāo)為,直線的斜率為,求的面積;
②若點(diǎn)的坐標(biāo)為,連結(jié)交于點(diǎn),記直線的斜率分別為,證明:是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中),且曲線在點(diǎn)處的切線垂直于直線.
(1)求的值及此時的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,分別為內(nèi)角所對的邊,且滿足,
(I)求C的大。
(II)現(xiàn)給出三個條件:①;②;③.試從中選擇兩個可以確定的條件,寫出你的選擇并以此為依據(jù)求的面積S.(只寫出一種情況即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com