【題目】對于區(qū)間,若函數(shù)同時滿足:①在上是單調(diào)函數(shù);②函數(shù)的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.(1)寫出函數(shù)的一個“保值”區(qū)間為_____________;(2)若函數(shù)存在“保值”區(qū)間,則實(shí)數(shù)的取值范圍為_____________.
【答案】
【解析】
(1)由條件可知在區(qū)間上是單調(diào)函數(shù),根據(jù)的值域判斷出,由此得到從而求解出的值;
(2)設(shè)存在的“保值”區(qū)間為,考慮兩種情況:、,根據(jù)單調(diào)性得到關(guān)于等式,由此表示出并求解出的范圍.
(1)因?yàn)?/span>,所以的值域?yàn)?/span>,
所以,所以在上單調(diào)遞增,
所以,所以,解得,所以一個“保值”區(qū)間為;
(2)若,則在上單調(diào)遞減,所以,所以,
所以,所以,,
所以,
又因?yàn)?/span>,所以,所以,
所以;
當(dāng)時,則在上單調(diào)遞增,所以,所以,
所以,所以,,
所以,
又因?yàn)?/span>,所以,所以,
因?yàn)?/span>,所以.
綜上可知:.
故答案為:;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)用定義證明函數(shù)在R上為單調(diào)遞增函數(shù).若當(dāng)時恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下述三個事件按順序分別對應(yīng)三個圖象,正確的順序是( )
(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是返回家里找到了作業(yè)本再上學(xué);(2)我騎著車一路勻速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間;(3)我出發(fā)后,心情輕松,緩慢行進(jìn),后來為了趕時間開始加速.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍;
(2)若對恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,左頂點(diǎn)B與右焦點(diǎn)之間的距離為3.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線交軸于點(diǎn),過且斜率不為的直線與橢圓相交于兩點(diǎn),連接并延長分別與直線交于兩點(diǎn). 若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運(yùn)營公司為了解某地區(qū)用戶對該公司所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了100名用戶,得到用戶的滿意度評分(滿分10分),現(xiàn)將評分分為5組,如下表:
組別 | 一 | 二 | 三 | 四 | 五 |
滿意度評分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
頻數(shù) | 5 | 10 | a | 32 | 16 |
頻率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估計用戶的滿意度評分的平均數(shù);
(3)若從這100名用戶中隨機(jī)抽取25人,估計滿意度評分低于6分的人數(shù)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)討論函數(shù)f(x)=ex的單調(diào)性,并證明當(dāng)x>0時,(x-2)ex+x+2>0.
(2)證明:當(dāng)a∈[0,1) 時,函數(shù)g(x)= (x>0) 有最小值.設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結(jié)果如表所示:
(1)由頻率分布直方圖,估計這100人年齡的平均數(shù);
(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的22列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?
45歲以下 | 45歲以上 | 總計 | |
不支持 | |||
支持 | |||
總計 |
參考數(shù)據(jù):
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com