【題目】為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,某部門(mén)從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表所示:

(1)由頻率分布直方圖,估計(jì)這100人年齡的平均數(shù);

(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的22列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計(jì)

不支持

支持

總計(jì)

參考數(shù)據(jù):

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

【答案】(1)42;(2)不能.

【解析】

(1)由頻率分布直方圖中平均數(shù)的計(jì)算公式求解即可;

(2)由題意填寫(xiě)列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論.

(1)估計(jì)這100人年齡的平均數(shù)為(歲);

(2)由頻率分布直方圖可知,45歲以下共有50人,45歲以上共有50人.

列聯(lián)表如下:

45歲以下

45歲以上

總計(jì)

不支持

35

40

75

支持

15

10

25

總計(jì)

50

50

100

∴ K= 1.333<3.841

∴不能在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的態(tài)度存在差異.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于區(qū)間,若函數(shù)同時(shí)滿足:①上是單調(diào)函數(shù);②函數(shù)的值域是,則稱區(qū)間為函數(shù)保值區(qū)間.1)寫(xiě)出函數(shù)的一個(gè)保值區(qū)間為_____________;(2)若函數(shù)存在保值區(qū)間,則實(shí)數(shù)的取值范圍為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中),且曲線在點(diǎn)處的切線垂直于直線.

(1)求的值及此時(shí)的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只紅鈴蟲(chóng)的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)于下表中,通過(guò)散點(diǎn)圖可以看出樣本點(diǎn)分布在一條指數(shù)型函數(shù)y=的圖象的周?chē)?

(1)試求出y關(guān)于x的上述指數(shù)型的回歸曲線方程(結(jié)果保留兩位小數(shù));

(2)試用(1)中的回歸曲線方程求相應(yīng)于點(diǎn)(24,17)的殘差.(結(jié)果保留兩位小數(shù))

溫度x(°C)

20

22

24

26

28

30

產(chǎn)卵數(shù)y(個(gè))

6

9

17

25

44

88

z=lny

1.79

2.20

2.83

3.22

3.78

4.48

幾點(diǎn)說(shuō)明:

①結(jié)果中的都應(yīng)按題目要求保留兩位小數(shù).但在求時(shí)請(qǐng)將的值多保留一位即用保留三位小數(shù)的結(jié)果代入.

②計(jì)算過(guò)程中可能會(huì)用到下面的公式:回歸直線方程的斜率==,截距.

③下面的參考數(shù)據(jù)可以直接引用:=25,=31.5,≈3.05,=5248,≈476.08,,ln18.17≈2.90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))是奇函數(shù).

1)求實(shí)數(shù)的值;

2)若,,求的取值范圍.

3)若,且恒成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓為左右焦點(diǎn),為短軸端點(diǎn),長(zhǎng)軸長(zhǎng)為4,焦距為,且,的面積為.

(Ⅰ)求橢圓的方程

(Ⅱ)設(shè)動(dòng)直線橢圓有且僅有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn)?若存在求出點(diǎn)的坐標(biāo),若不存在.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,分別為內(nèi)角所對(duì)的邊,且滿足,

(I)求C的大。

(II)現(xiàn)給出三個(gè)條件:①;②;③.試從中選擇兩個(gè)可以確定的條件,寫(xiě)出你的選擇并以此為依據(jù)求的面積S.(只寫(xiě)出一種情況即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動(dòng)購(gòu)水機(jī)處每購(gòu)買(mǎi)一瓶礦泉水,便自覺(jué)向捐款箱中至少投入一元錢(qián).現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:

售出水量(單位:箱)

7

6

6

5

6

收入(單位:元)

165

142

148

125

150

學(xué)校計(jì)劃將捐款以獎(jiǎng)學(xué)金的形式獎(jiǎng)勵(lì)給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎(jiǎng)學(xué)金500元;綜合考核21-50名,獲二等獎(jiǎng)學(xué)金300元;綜合考核50名以后的不獲得獎(jiǎng)學(xué)金.

(1)若成線性相關(guān),則某天售出9箱水時(shí),預(yù)計(jì)收入為多少元?

(2)假設(shè)甲、乙、丙三名學(xué)生均獲獎(jiǎng),且各自獲一等獎(jiǎng)和二等獎(jiǎng)的可能性相同,求三人獲得獎(jiǎng)學(xué)金之和不超過(guò)1000元的概率.

附:回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的左右焦點(diǎn)分別為,關(guān)于直線的對(duì)稱點(diǎn)在直線上.

(1)求橢圓的離心率;

(2)若的長(zhǎng)軸長(zhǎng)為且斜率為的直線交橢圓于,兩點(diǎn),問(wèn)是否存在定點(diǎn),使得的斜率之和為定值?若存在,求出所有滿足條件的點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案