【題目】已知橢圓:()的左右焦點(diǎn)分別為,且關(guān)于直線的對稱點(diǎn)在直線上.
(1)求橢圓的離心率;
(2)若的長軸長為且斜率為的直線交橢圓于,兩點(diǎn),問是否存在定點(diǎn),使得,的斜率之和為定值?若存在,求出所有滿足條件的點(diǎn)坐標(biāo);若不存在,說明理由.
【答案】(1);(2)滿足條件的定點(diǎn)是存在的,坐標(biāo)為及
【解析】試題分析:(1)依題知,根據(jù)對稱求出點(diǎn)M,根據(jù)點(diǎn)在直線上,可得離心率;(2)由(1)可得橢圓方程為,設(shè)設(shè)直線方程為,聯(lián)立方程,根據(jù)根與系數(shù)的關(guān)系可得,,設(shè),可得 ,化簡整理即可.
試題解析:
(1)依題知,設(shè),則且,解得,即
∵在直線上,∴,,∴
(2)由(1)及題設(shè)得:且,∴,,∴橢圓方程為
設(shè)直線方程為,代入橢圓方程消去整理得.依題,即
設(shè),,則,
如果存在使得為定值,那么的取值將與無關(guān)
,令
則為關(guān)于的恒等式
∴,解得或
綜上可知,滿足條件的定點(diǎn)是存在的,坐標(biāo)為及
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表所示:
(1)由頻率分布直方圖,估計(jì)這100人年齡的平均數(shù);
(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的22列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?
45歲以下 | 45歲以上 | 總計(jì) | |
不支持 | |||
支持 | |||
總計(jì) |
參考數(shù)據(jù):
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為(為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對任意實(shí)數(shù)x、y恒有,當(dāng)x>0時(shí),f(x)<0,且.
(1)判斷的奇偶性;
(2)求在區(qū)間[-3,3]上的最大值;
(3)若對所有的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為( )
A. 10000立方尺 B. 11000立方尺
C. 12000立方尺 D. 13000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時(shí),若對任意均有成立,求實(shí)數(shù)的取值范圍;
(2)設(shè)直線與曲線和曲線相切,切點(diǎn)分別為,,其中.
①求證:;
②當(dāng)時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若質(zhì)地均勻的六面體玩具各面分別標(biāo)有數(shù)字1,2,3,4,5,6.拋擲該玩具后,任何一個(gè)數(shù)字所在的面朝上的概率均相等.拋擲該玩具一次,記事件A=“向上的面標(biāo)記的數(shù)字是完全平方數(shù)(即能寫出整數(shù)的平方形式的數(shù),如9=32,9是完全平方數(shù))”
(1)甲、乙二人利用該玩具進(jìn)行游戲,并規(guī)定:①甲拋擲一次,若事件A發(fā)生,則向上一面的點(diǎn)數(shù)的6倍為甲的得分;若事件A不發(fā)生,則甲得0分;②乙拋擲一次,將向上的一面對應(yīng)的數(shù)字作為乙的得分,F(xiàn)甲、乙二人各拋擲該玩具一次,分別求二人得分的期望;
(2)拋擲該玩具一次,記事件B=“向上一面的點(diǎn)數(shù)不超過”,若事件A與B相互獨(dú)立,試求出所有的整數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某良種培育基地正在培育一種小麥新品種A,將其與原有的一個(gè)優(yōu)良品種B進(jìn)行對照試驗(yàn),兩種小麥各種植了24畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下:
品種A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,451,454
品種B:363,371,374,383,385,386,391,392,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430
(1)畫出莖葉圖.
(2)用莖葉圖處理現(xiàn)有的數(shù)據(jù),有什么優(yōu)點(diǎn)?
(3)通過觀察莖葉圖,對品種A與B的畝產(chǎn)量及其穩(wěn)定性進(jìn)行比較,寫出統(tǒng)計(jì)結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,四邊形
為矩形,平面平面,.
(I)求證:平面;
(II)點(diǎn)在線段上運(yùn)動,設(shè)平面與平面所成二面角的平面角為,
試求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com