【題目】已知函數(shù),,.
(1)當(dāng)時(shí),若對(duì)任意均有成立,求實(shí)數(shù)的取值范圍;
(2)設(shè)直線與曲線和曲線相切,切點(diǎn)分別為,,其中.
①求證:;
②當(dāng)時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ)①證明見解析;②
【解析】試題分析:(Ⅰ)根據(jù)題意,可得不等式,由于,則,
利用導(dǎo)數(shù)法,分別函數(shù)的最小值,的最大值,從而可確定實(shí)數(shù)的取值范圍;(Ⅱ)①根據(jù)題意,由函數(shù),的導(dǎo)數(shù)與切點(diǎn)分別給出切線的方程,由于切線相同,則其斜率與在軸上的截距相等,建立方程組,由,從而可證;②將不等式,轉(zhuǎn)化為,構(gòu)造函數(shù),由函數(shù)的單調(diào)性求其最大值,從而問題得于解決.
試題解析:(Ⅰ):當(dāng)時(shí):
由知:
依題意:對(duì)恒成立
設(shè)
當(dāng)時(shí);當(dāng)時(shí),
設(shè)
當(dāng)時(shí);當(dāng)時(shí),
故:實(shí)數(shù)k的取值范圍是
(Ⅱ)由已知:,
①:由得:
由得:
故
,,,故:
②:由①知:,且
由得:,
設(shè)
在為減函數(shù),
由得:
又
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓為左右焦點(diǎn),為短軸端點(diǎn),長軸長為4,焦距為,且,的面積為.
(Ⅰ)求橢圓的方程
(Ⅱ)設(shè)動(dòng)直線橢圓有且僅有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在求出點(diǎn)的坐標(biāo),若不存在.請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域在上的奇函數(shù),且.
(1)用定義證明:函數(shù)在上是增函數(shù),
(2)若實(shí)數(shù)滿足,求實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)E,F分別是正方體ABCD﹣A1B1C1D1的棱DC上兩點(diǎn),且AB=2,EF=1,給出下列四個(gè)命題:
①三棱錐D1﹣B1EF的體積為定值;
②異面直線D1B1與EF所成的角為45°;
③D1B1⊥平面B1EF;
④直線D1B1與平面B1EF所成的角為60°.
其中正確的命題為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左右焦點(diǎn)分別為,且關(guān)于直線的對(duì)稱點(diǎn)在直線上.
(1)求橢圓的離心率;
(2)若的長軸長為且斜率為的直線交橢圓于,兩點(diǎn),問是否存在定點(diǎn),使得,的斜率之和為定值?若存在,求出所有滿足條件的點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣alnx+(a+1)x﹣(a>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≥﹣+ax+b恒成立,求a時(shí),實(shí)數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形,在軸上且, (,).
(Ⅰ)求點(diǎn)軌跡的方程;
(Ⅱ)延長交軌跡于點(diǎn),軌跡在點(diǎn)處的切線與直線交于點(diǎn),試判斷以為圓心,線段為半徑的圓與直線的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為保護(hù)農(nóng)民種糧收益,促進(jìn)糧食生產(chǎn),確保國家糧食安全,調(diào)動(dòng)廣大農(nóng)民糧食生產(chǎn)的積極性,從2004年開始,國家實(shí)施了對(duì)種糧農(nóng)民直接補(bǔ)貼.通過對(duì)2014~2018年的數(shù)據(jù)進(jìn)行調(diào)查,發(fā)現(xiàn)某地區(qū)發(fā)放糧食補(bǔ)貼額(億元)與該地區(qū)糧食產(chǎn)量(萬億噸)之間存在著線性相關(guān)關(guān)系.統(tǒng)計(jì)數(shù)據(jù)如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
補(bǔ)貼額億元 | 9 | 10 | 12 | 11 | 8 |
糧食產(chǎn)量萬億噸 | 23 | 25 | 30 | 26 | 21 |
(1)請(qǐng)根據(jù)如表所給的數(shù)據(jù),求出關(guān)于的線性回歸直線方程;
(2)通過對(duì)該地區(qū)糧食產(chǎn)量的分析研究,計(jì)劃2019年在該地區(qū)發(fā)放糧食補(bǔ)貼額7億元,請(qǐng)根據(jù)(1)中所得的線性回歸直線方程,預(yù)測(cè)2019年該地區(qū)的糧食產(chǎn)量.
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中中,直線,圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程;
(2)若直線與圓交于兩點(diǎn),且的面積是,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com