【題目】為保護(hù)農(nóng)民種糧收益,促進(jìn)糧食生產(chǎn),確保國家糧食安全,調(diào)動廣大農(nóng)民糧食生產(chǎn)的積極性,從2004年開始,國家實施了對種糧農(nóng)民直接補(bǔ)貼.通過對2014~2018年的數(shù)據(jù)進(jìn)行調(diào)查,發(fā)現(xiàn)某地區(qū)發(fā)放糧食補(bǔ)貼額(億元)與該地區(qū)糧食產(chǎn)量(萬億噸)之間存在著線性相關(guān)關(guān)系.統(tǒng)計數(shù)據(jù)如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
補(bǔ)貼額億元 | 9 | 10 | 12 | 11 | 8 |
糧食產(chǎn)量萬億噸 | 23 | 25 | 30 | 26 | 21 |
(1)請根據(jù)如表所給的數(shù)據(jù),求出關(guān)于的線性回歸直線方程;
(2)通過對該地區(qū)糧食產(chǎn)量的分析研究,計劃2019年在該地區(qū)發(fā)放糧食補(bǔ)貼額7億元,請根據(jù)(1)中所得的線性回歸直線方程,預(yù)測2019年該地區(qū)的糧食產(chǎn)量.
(參考公式:,)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1和圖2中所有的正方形都全等,圖1中的正方形放在圖2中的①②③④某一位置,所組成的圖形能圍成正方體的概率是( )
A. B. C. D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時,若對任意均有成立,求實數(shù)的取值范圍;
(2)設(shè)直線與曲線和曲線相切,切點(diǎn)分別為,,其中.
①求證:;
②當(dāng)時,關(guān)于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某良種培育基地正在培育一種小麥新品種A,將其與原有的一個優(yōu)良品種B進(jìn)行對照試驗,兩種小麥各種植了24畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下:
品種A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,451,454
品種B:363,371,374,383,385,386,391,392,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430
(1)畫出莖葉圖.
(2)用莖葉圖處理現(xiàn)有的數(shù)據(jù),有什么優(yōu)點(diǎn)?
(3)通過觀察莖葉圖,對品種A與B的畝產(chǎn)量及其穩(wěn)定性進(jìn)行比較,寫出統(tǒng)計結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二(20)班共50名學(xué)生,在期中考試中,每位同學(xué)的數(shù)學(xué)考試分?jǐn)?shù)都在區(qū)間內(nèi),將該班所有同學(xué)的考試分?jǐn)?shù)分為七個組:,,,,,,,繪制出頻率分布直方圖如圖所示.
(1)根據(jù)頻率分布直方圖,估計這次考試學(xué)生成績的中位數(shù)和平均數(shù);
(2)已知成績?yōu)?04分或105分的同學(xué)共有3人,現(xiàn)從成績在中的同學(xué)中任選2人,則至少有1人成績不低于106分的概率為多少?(每位同學(xué)的成績都為整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域為,且對任意,有,且當(dāng)時.
(1)證明:是奇函數(shù);
(2)證明:在上是減函數(shù);
(3)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為2,且橢圓的離心率為.
(1)求橢圓的方程;
(2)過橢圓的上焦點(diǎn)作相互垂直的弦,,求為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com