【題目】在平面直角坐標(biāo)系中中,直線,圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程;
(2)若直線與圓交于兩點,且的面積是,求實數(shù)的值.
【答案】(1)圓的極坐標(biāo)方程為;(2)的取值為或或.
【解析】試題分析:(1)根據(jù) 將直線直角坐標(biāo)方程化為極坐標(biāo)方程,先根據(jù)三角函數(shù)平方關(guān)系將圓的參數(shù)方程化為普通方程,再根據(jù)將圓的直角坐標(biāo)方程化為極坐標(biāo)方程,(2)先根據(jù)三角形面積求,再得圓心到直線距離,最后根據(jù)點到直線距離公式求實數(shù)的值.
試題解析:(1)由得,所以
將化為直角坐標(biāo)方程為,
所以.
將代入上式得.
圓的極坐標(biāo)方程為.
(2)因為,得
或,
當(dāng)時,.由(1)知直線的極坐標(biāo)方程為,代入圓的極坐標(biāo)方程得.
所以,
化簡得,解得或.
當(dāng)時,,同理計算可得或.
綜上:的取值為或或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時,若對任意均有成立,求實數(shù)的取值范圍;
(2)設(shè)直線與曲線和曲線相切,切點分別為,,其中.
①求證:;
②當(dāng)時,關(guān)于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域為,且對任意,有,且當(dāng)時.
(1)證明:是奇函數(shù);
(2)證明:在上是減函數(shù);
(3)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,四邊形
為矩形,平面平面,.
(I)求證:平面;
(II)點在線段上運動,設(shè)平面與平面所成二面角的平面角為,
試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若,則稱為的“不動點”;若,則稱為的“穩(wěn)定點”.函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為和,即,.
()設(shè)函數(shù),求集合和.
()求證:.
()設(shè)函數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體QPABCD為一簡單組合體,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
(1)求證:平面PAB⊥平面QBC;
(2)求該組合體QPABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。
(1)求的值,并根據(jù)頻率分布直方圖估計該校學(xué)生一周課外閱讀時間的平均值;
(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加校“中華詩詞比賽”。經(jīng)過比賽后,從這6人中隨機挑選2人組成該校代表隊,求這2人來自不同組別的概率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com