【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。
(1)求的值,并根據(jù)頻率分布直方圖估計該校學(xué)生一周課外閱讀時間的平均值;
(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”。經(jīng)過比賽后,從這6人中隨機(jī)挑選2人組成該校代表隊,求這2人來自不同組別的概率。
【答案】(1)a=0.06,平均值為12.25小時 (2)
【解析】
(1)由頻率分布直方圖可得第三組和第五組的頻率之和,第三組的頻率,由此能求出a和該樣本數(shù)據(jù)的平均數(shù),從而可估計該校學(xué)生一周課外閱讀時間的平均值;
(2)從第3、4、5組抽取的人數(shù)分別為3、2、1,設(shè)為A,B,C,D,E,F,利用列舉法能求出從該6人中選拔2人,從而得到這2人來自不同組別的概率.
(1)由頻率分布直方圖可得第三組和第五組的頻率之和為
,
第三組的頻率為
∴
該樣本數(shù)據(jù)的平均數(shù)
所以可估計該校學(xué)生一周課外閱讀時間的平均值為小時。
(2)易得從第3、4、5組抽取的人數(shù)分別為3、2、1,
設(shè)為,則從該6人中選拔2人的基本事件有:
共15種,
其中來自不同的組別的基本事件有:
,
共11種,
∴這2人來自不同組別的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中中,直線,圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程;
(2)若直線與圓交于兩點,且的面積是,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某工廠生產(chǎn)線上隨機(jī)抽取16件零件,測量其內(nèi)徑數(shù)據(jù)從小到大依次排列如下:1.12,1.25,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42.據(jù)此可估計該生產(chǎn)線上大約有25%的零件內(nèi)徑小于等于___________㎜,大約有30%的零件內(nèi)徑大于___________mm(單位:mm).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若時,求與的交點坐標(biāo);
(2)若上的點到距離的最大值為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AD∥BC,CD⊥BC,AD=2,AB=BC=3,PA=4,M為AD的中點,N為PC上一點,且PC=3PN.
(1)求證:MN∥平面PAB;
(2)求二面角PANM的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f (x)=ln x-x+1.
(1)討論函數(shù)f (x)的單調(diào)性;
(2)證明當(dāng)x∈(1,+∞)時, ;
(3)設(shè)c>1,證明當(dāng)x∈(0,1)時,1+(c-1)x>cx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足(1)對于定義域上的任意,恒有;(2)對于定義域上的任意當(dāng)時,恒有,則稱函數(shù)為“理想函數(shù)”,給出下列四個函數(shù)中:① ; ② ;③;④,則被稱為“理想函數(shù)”的有( )
A.①B.②④C.③D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com