【題目】如圖,在四棱錐中,底面為菱形,為的中點,.
(1)求證:平面;
(2)點在線段上,,試確定的值,使平面;
(3)若平面,平面平面,求二面角的大小.
【答案】(1)證明見解析
(2)
(3)
【解析】
(1)由線面垂直的判定定理,分別證明,即可;
(2)利用平面,可得,再利用比例關(guān)系即可得解;
(3)先建立空間直角坐標系,再分別求出平面和平面的一個法向量,再結(jié)合向量的夾角公式求解即可.
解:(1)由底面為菱形,為的中點,則,
又,則,
又,
由線面垂直的判定定理可得平面;
(2)當(dāng)時,平面,
證明如下:連接交于,連接,
因為,所以,
因為平面,平面,
平面平面,
所以,
所以,
所以,
故;
(3)因為,平面平面,交線為,則平面,
建立如圖所示的看見直角坐標系,
由,則有,
設(shè)平面的一個法向量為,
由,且, ,
可得,取,則,
取平面的一個法向量為,
則,
故二面角的大小為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將所有平面向量組成的集合記作,是從到的對應(yīng)關(guān)系,記作或,其中、、、都是實數(shù),定義對應(yīng)關(guān)系的模為:在的條件下的最大值記作,若存在非零向量,及實數(shù)使得,則稱為的一個特殊值;
(1)若,求;
(2)如果,計算的特征值,并求相應(yīng)的;
(3)若,要使有唯一的特征值,實數(shù)、、、應(yīng)滿足什么條件?試找出一個對應(yīng)關(guān)系,同時滿足以下兩個條件:①有唯一的特征值,②,并驗證滿足這兩個條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(1)求橢圓C的標準方程;
(2)設(shè)F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當(dāng)最小時,求點T的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了預(yù)測下月產(chǎn)品銷售情況,找出了近7個月的產(chǎn)品銷售量(單位:萬件)的統(tǒng)計表:
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售量(萬件) |
但其中數(shù)據(jù)污損不清,經(jīng)查證,,.
(1)請用相關(guān)系數(shù)說明銷售量與月份代碼有很強的線性相關(guān)關(guān)系;
(2)求關(guān)于的回歸方程(系數(shù)精確到0.01);
(3)公司經(jīng)營期間的廣告宣傳費(單位:萬元)(),每件產(chǎn)品的銷售價為10元,預(yù)測第8個月的毛利潤能否突破15萬元,請說明理由.(毛利潤等于銷售金額減去廣告宣傳費)
參考公式及數(shù)據(jù):,相關(guān)系數(shù),當(dāng)時認為兩個變量有很強的線性相關(guān)關(guān)系,回歸方程中斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線和,過拋物線上一點作兩條直線與分別相切于兩點,分別交拋物線于兩點.
(1)當(dāng)的角平分線垂直軸時,求直線的斜率;
(2)若直線在軸上的截距為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某地區(qū)某種昆蟲產(chǎn)卵數(shù)和溫度有關(guān).現(xiàn)收集了一只該品種昆蟲的產(chǎn)卵數(shù)(個)和溫度()的7組觀測數(shù)據(jù),其散點圖如所示:
根據(jù)散點圖,結(jié)合函數(shù)知識,可以發(fā)現(xiàn)產(chǎn)卵數(shù)和溫度可用方程來擬合,令,結(jié)合樣本數(shù)據(jù)可知與溫度可用線性回歸方程來擬合.根據(jù)收集到的數(shù)據(jù),計算得到如下值:
27 | 74 | 182 |
表中,.
(1)求和溫度的回歸方程(回歸系數(shù)結(jié)果精確到);
(2)求產(chǎn)卵數(shù)關(guān)于溫度的回歸方程;若該地區(qū)一段時間內(nèi)的氣溫在之間(包括與),估計該品種一只昆蟲的產(chǎn)卵數(shù)的范圍.(參考數(shù)據(jù):,,,,.)
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,點為棱上一動點(不包括頂點),平面交于點,則下列結(jié)論中錯誤的是( )
A.存在點,使得四邊形為菱形
B.存在點,使得四邊形的面積最小
C.存在點,使得平面
D.存在點,使得平面平面(其中為的中點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某自來水公司要在公路兩側(cè)安裝排水管,公路為東西方向,在路北側(cè)沿直線排,在路南側(cè)沿直線排,現(xiàn)要在矩形區(qū)域內(nèi)沿直線將與接通.已知,,公路兩側(cè)排水管費用為每米1萬元,穿過公路的部分的排水管費用為每米2萬元,設(shè)與所成的小于的角為.
(Ⅰ)求矩形區(qū)域內(nèi)的排水管費用關(guān)于的函數(shù)關(guān)系;
(Ⅱ)求排水管的最小費用及相應(yīng)的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為橢圓的左頂點,過的直線交拋物線于、兩點,是的中點.
(1)求證:點的橫坐標是定值,并求出該定值;
(2)若直線過點,且傾斜角和直線的傾斜角互補,交橢圓于、兩點,求的值,使得的面積最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com