【題目】如圖,在正方體中,點(diǎn)為棱上一動(dòng)點(diǎn)(不包括頂點(diǎn)),平面于點(diǎn),則下列結(jié)論中錯(cuò)誤的是( )

A.存在點(diǎn),使得四邊形為菱形

B.存在點(diǎn),使得四邊形的面積最小

C.存在點(diǎn),使得平面

D.存在點(diǎn),使得平面平面(其中的中點(diǎn))

【答案】C

【解析】

存在性問(wèn)題即找到符合條件的情況即可,當(dāng)點(diǎn)分別為的中點(diǎn)時(shí),選項(xiàng)A,B,D正確;利用反證法假設(shè)選項(xiàng)C成立,進(jìn)而證明,即可判斷.

對(duì)于選項(xiàng)A,當(dāng)點(diǎn)分別為的中點(diǎn)時(shí),四邊形四邊相等,即為菱形,A正確;

對(duì)于選項(xiàng)B,易證平面,因?yàn)?/span>平面,所以,則四邊形的面積為,則當(dāng)點(diǎn)分別為的中點(diǎn)時(shí),此時(shí)面積最小,B正確;

對(duì)于選項(xiàng)C,平面,與平面上的任意直線均垂直,

因?yàn)?/span>平面,所以,則四邊形為菱形,,

因?yàn)?/span>是正方體,所以,故假設(shè)不成立,C錯(cuò)誤;

對(duì)于選項(xiàng)D,當(dāng)點(diǎn)分別為的中點(diǎn)時(shí),,,

所以平面平面,D正確;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為

)求橢圓的標(biāo)準(zhǔn)方程及離心率;

)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),若點(diǎn)滿足,求證:由點(diǎn) 構(gòu)成的曲線關(guān)于直線對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,過(guò)作垂直于軸的直線交該橢圓于,兩點(diǎn),直線的斜率為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若的外接圓在處的切線與橢圓交另一點(diǎn)于,且的面積為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,的中點(diǎn),.

1)求證:平面

2)點(diǎn)在線段上,,試確定的值,使平面;

3)若平面,平面平面,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某盒子中有4個(gè)小球,分別寫(xiě)有“中”、“美”、“建”、“交”四個(gè)字,從中任取一個(gè)小球,有放回抽取,直到“建”、“交”二字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率;利用電腦隨機(jī)產(chǎn)生03之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3,代表“中”、“美”、“建”、“交”著四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了一下18組隨機(jī)數(shù):

323 213 320 032 132 031 123 330 110

321 120 122 321 221 230 132 322 130

由此可以估計(jì),恰好第三次停止的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某氣象站統(tǒng)計(jì)了4月份甲、乙兩地的天氣溫度(單位),統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示,

1)根據(jù)所給莖葉圖利用平均值和方差的知識(shí)分析甲,乙兩地氣溫的穩(wěn)定性;

2)氣象主管部門要從甲、乙兩地各隨機(jī)抽取一天的天氣溫度,若甲、乙兩地的溫度之和大于或等于,則被稱為甲、乙兩地往來(lái)溫度適宜天氣,求甲、乙兩地往來(lái)溫度適宜天氣的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線1(a>0,b>0)的一條漸近線方程為2xy0,且頂點(diǎn)到漸近線的距離為.

(1)求此雙曲線的方程;

(2)設(shè)P為雙曲線上一點(diǎn),A,B兩點(diǎn)在雙曲線的漸近線上,且分別位于第一、二象限,若,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018湖南(長(zhǎng)郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考已知函數(shù)(其中為常數(shù), 為自然對(duì)數(shù)的底數(shù), ).

)若函數(shù)的極值點(diǎn)只有一個(gè),求實(shí)數(shù)的取值范圍;

)當(dāng)時(shí),若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解戶籍、性別對(duì)生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為200的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)村戶籍各100人;男性120人,女性80人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖,如圖所示,其中陰影部分表示傾向選擇生育二胎的對(duì)應(yīng)比例,則下列敘述中錯(cuò)誤的是( )

A. 是否傾向選擇生育二胎與戶籍有關(guān)

B. 是否傾向選擇生育二胎與性別有關(guān)

C. 傾向選擇生育二胎的人群中,男性人數(shù)與女性人數(shù)相同

D. 傾向選擇不生育二胎的人群中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案