已知區(qū)域Ω={(x,y)|x+y≤10,x≥0,y≥0},A={(x,y)|x-y≥0,x≤5,y≥0},若向區(qū)域Ω上隨機(jī)投1個點(diǎn),求這個點(diǎn)落入?yún)^(qū)域A的概率P(A).
考點(diǎn):幾何概型
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:本題考查幾何概型,作出Ω={(x,y)|x+y≤10,x≥0,y≥0}的區(qū)域,A={(x,y)|x-y≥0,x≤5,y≥0}的區(qū)域,結(jié)合圖形分別計(jì)算區(qū)域的面積S,S1,然后代入公式即可.
解答: 解:如圖.整個基本事件空間Ω可用腰長為10的等腰直角三角形的面積度量,而點(diǎn)落入?yún)^(qū)域A可用陰影部分所示三角形的面積度量,故所求事件的概率為
1
2
×5×5
1
2
×10×10
=
1
4
點(diǎn)評:本題主要考查了與面積有關(guān)的幾何概率的去求解,解題的關(guān)鍵是熟練應(yīng)用線性規(guī)劃的知識作出各平面區(qū)域進(jìn)而計(jì)算出面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將a,b都是整數(shù)的點(diǎn)(a,b)稱為整點(diǎn),若在圓x2+y2-6x+5=0內(nèi)的整點(diǎn)中任取一點(diǎn)M,則點(diǎn)M到直線2x+y-12=0的距離大于
5
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“水”這個曾經(jīng)人認(rèn)為取之不盡用之不竭的資源,竟然到了嚴(yán)重制約我國經(jīng)濟(jì)發(fā)展,嚴(yán)重影響人民生活的程度.因?yàn)槿彼,每年給我國工業(yè)造成的損失達(dá)2000億元,給我國農(nóng)業(yè)造成的損失達(dá)1500億元,嚴(yán)重缺水困擾全國三分之二的城市.為了節(jié)約用水,某市打算出臺一項(xiàng)水費(fèi)政策,規(guī)定每季度每人用水量不超過5噸時,每噸水費(fèi)1.2元,若超過5噸而不超過6噸時,超過的部分的水費(fèi)加收200%,若超過6噸而不超過7噸時,超過部分的水費(fèi)加收400%,如果某人本季度實(shí)際用水量為x(x≤7)噸,應(yīng)交水費(fèi)為f(x).
(1)試求出函數(shù)f(x)的解析式;
(2)若本季度他交了12.6元,求他本季度實(shí)際用水多少噸?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程|5x-4|+a=0無解,|4x-3|+b=0有兩個解,|3x-2|+c=0只有一個解,則化簡|a-c|+|c-b|-|a-b|的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的增函數(shù),若a∈R,則( 。
A、f(a)>f(2a)
B、f(a2)<f(a)
C、f(a+3)>f(a-2)
D、f(6)>f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
|x|
x
+|x|的圖象如下圖所示,正確的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若Sn=1+11+111+…+
111…1
n個1
,則Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(1,
2
)的直線l將圓(x-2)2+y2=4分成兩段弧,當(dāng)劣弧所對的圓心角最小時,直線l的斜率k等于( 。
A、-
2
2
B、
2
2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(3,-cos(ωx)),
b
=(sin(ωx),
3
),其中ω>0,函數(shù)f(x)=
a
b
的最小正周期為π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c.且f(
A
2
)=
3

①求角A的大。谇骉=sin2A+sin2B+sin2C的范圍.

查看答案和解析>>

同步練習(xí)冊答案