y=
1-x2
(-1≤x<0)的反函數(shù)是
 
考點:反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:把y=
1-x2
平方,結(jié)合x的范圍可解得x的表達式,可得原函數(shù)的反函數(shù).
解答: 解:把y=
1-x2
平方可得y2=1-x2,
∵-1≤x<0,∴x=-
1-y2

∴原函數(shù)的反函數(shù)為:y=-
1-x2

故答案為:y=-
1-x2
點評:本題考查反函數(shù)的求解,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1+1nx
x

(1)求f(x)的最大值;
(2)若對所有x≥1都有f(x)≥
k
x+1
,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-4:坐標系與參數(shù)方程)
已知直線l的參數(shù)方程為
x=2t
y=1+2t
(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρcos2θ=sinθ.設(shè)直線l與曲線C交于A,B兩點,則
OA
OB
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A是半徑為5的圓O上的一個定點,單位向量
AB
在A點處與圓O相切,點P是圓O上的一個動點,且點P與點A不重合,則
AP
AB
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-9lnx在區(qū)間(0,a)上不存在極值點,則a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式
x2
4
+3y2
xy
k
對任意的正數(shù)x,y恒成立,則正數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,3,…,100},B⊆A,且B中任何兩個元素之比都不是2或
1
2
,則集合B的元素個數(shù)最多是
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=(
1
2
)x
-m,P={m|任意x1,x2∈({0,2}),f(x1)≥g(x2)},Q={m|任意x1∈(0,2),存在x2∈(0,2),f(x1)≥g(x2)},則P∩Q=
 
$\end{array}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(
1
x
+x2)3
的展開式中的常數(shù)項為a,則直線y=ax與曲線y=x2圍成圖形的面積為
 

查看答案和解析>>

同步練習冊答案