如圖,平面中兩條直線l1和l 2相交于點O,對于平面上任意一點M,若x,y分別是M到直線l 1和l 2的距離,則稱有序非負實數(shù)對(x,y)是點M的“距離坐標”.已知常數(shù)p≥0,q≥0,給出下列三個命題:
①若p=q=0,則“距離坐標”為(0,0)的點有且只有1個;
②若pq=0,且p+q≠0,則“距離坐標”為( p,q) 的點有且只有2個;
③若pq≠0則“距離坐標”為 ( p,q) 的點有且只有3個.
上述命題中,正確的有 ①② .(填上所有正確結(jié)論對應的序號)
考點:
命題的真假判斷與應用.
專題:
常規(guī)題型.
分析:
題目中點到直線的距離,分別為p、q,由于p、q的范圍是常數(shù)p≥0,q≥0,所以對p、q進行分類討論,驗證①②③是否成立.
解答:
解:①p=q=0,則“距離坐標”為(0,0)的點有且只有1個,此點為點O.故①正確;
②正確,p,q中有且僅有一個為0,當p為0時,坐標點在L1上,分別為關(guān)于O點對稱的兩點,反則在L2上也有兩點,但是這兩種情況不能同時存在;
③錯誤,若pq≠0則“距離坐標”為 ( p,q) 的點有且只有4個,而四個交點為與直線l1相距為p的兩條平行線和與直線l2相距為q的兩條平行線的交點;
故答案為:①②
點評:
本題解答中,有分類討論的思想方法,又有創(chuàng)新意識,解題時需要注意.這是一個好題,注意變形去掉p≥0,q≥0又該怎樣解.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com