若方程ax2+bx+c=0的兩實(shí)根為x1、x2,集合S={x|x>x1},T={x|x>x2},P={x|x<x1},Q={x|x<x2},則不等式ax2+bx+c>0(a>0)的解集為


  1. A.
    (S∪T)∩(P∪Q)
  2. B.
    (S∩T)∩(P∩Q)
  3. C.
    (S∪T)∪(P∪Q)
  4. D.
    (S∩T)∪(P∩Q)
D
分析:根據(jù)一元二次不等式的解法可知不等式ax2+bx+c>0(a>0)的解集在兩根之外,規(guī)定兩根大小,然后根據(jù)集合運(yùn)算與解集比較可得結(jié)論.
解答:不妨設(shè)x1>x2,因不等式ax2+bx+c>0(a>0)的解集在兩根之外
所以不等式ax2+bx+c>0(a>0)的解集為{x|x<x2或x>x1}
而S∩T={x|x>x1},P∩Q={x|x<x2}
∴{x|x<x2或x>x1}=(S∩T)∪(P∩Q)
故選D.
點(diǎn)評:本題主要考查了一元二次不等式的解法,以及集合的運(yùn)算,同時(shí)考查了分析問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是雙曲線的實(shí)半軸、虛半軸和半焦距,若方程ax2+bx+c=0無實(shí)數(shù)根,則此雙曲線的離心率e的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出命題“若方程ax2-bx+c=0(a≠0)的兩根均大于0,則ac>0”的一個(gè)等價(jià)命題是
若ac≤0,則方程a2-bx+c=0的兩根不全大于0
若ac≤0,則方程a2-bx+c=0的兩根不全大于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程ax2+bx+c=0(a≠0)有兩個(gè)實(shí)根x1,x2,則有 x1+x2=-
b
a
,x1x2=
c
a
此定理叫韋達(dá)定理,根據(jù)韋達(dá)定理可以求解下題:已知lgm,lgn是方程2x2-4x+1=0的兩個(gè)實(shí)數(shù)根,則
(1)求mn的值;
(2)求lognm+logmn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程ax2+bx+c=0的兩實(shí)根為x1、x2,集合S={x|x>x1},T={x|x>x2},P={x|x<x1},Q={x|x<x2},則不等式ax2+bx+c>0(a>0)的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:①對角線不垂直的平行四邊形不是菱形;②“若
x
+
y
=0
,則xy=0”的逆命題;③“x∈R,若x≠0,則x2>0”的否命題;④“若方程ax2+bx+c=0有兩個(gè)不相等的實(shí)根,則ac<0”的逆否命題.其中是真命題的共有( 。

查看答案和解析>>

同步練習(xí)冊答案