【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.
(1)當時,求M點的極坐標;
(2)將射線OM繞原點O逆時針旋轉(zhuǎn)與該曲線相交于點N,求的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的離心率為,且過點A(2,1).
(1)求C的方程:
(2)點M,N在C上,且AM⊥AN,AD⊥MN,D為垂足.證明:存在定點Q,使得|DQ|為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司采購了一批零件,為了檢測這批零件是否合格,從中隨機抽測120個零件的長度(單位:分米),按數(shù)據(jù)分成,,,,,這6組,得到如圖所示的頻率分布直方圖,其中長度大于或等于1.59分米的零件有20個,其長度分別為1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,1.68,1.69,1.69,1.71,1.72,1.74,以這120個零件在各組的長度的頻率估計整批零件在各組長度的概率.
(1)求這批零件的長度大于1.60分米的頻率,并求頻率分布直方圖中,,的值;
(2)若從這批零件中隨機選取3個,記為抽取的零件長度在的個數(shù),求的分布列和數(shù)學期望;
(3)若變量滿足且,則稱變量滿足近似于正態(tài)分布的概率分布.如果這批零件的長度(單位:分米)滿足近似于正態(tài)分布的概率分布,則認為這批零件是合格的將順利被簽收;否則,公司將拒絕簽收.試問,該批零件能否被簽收?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(R).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若對任意實數(shù),當時,函數(shù)的最大值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地準備在山谷中建一座橋梁,橋址位置的豎直截面圖如圖所示:谷底O在水平線MN上,橋AB與MN平行,為鉛垂線(在AB上).經(jīng)測量,左側(cè)曲線AO上任一點D到MN的距離(米)與D到的距離a(米)之間滿足關(guān)系式;右側(cè)曲線BO上任一點F到MN的距離(米)與F到的距離b(米)之間滿足關(guān)系式.已知點B到的距離為40米.
(1)求橋AB的長度;
(2)計劃在谷底兩側(cè)建造平行于的橋墩CD和EF,且CE為80米,其中C,E在AB上(不包括端點).橋墩EF每米造價k(萬元)、橋墩CD每米造價(萬元)(k>0).問為多少米時,橋墩CD與EF的總造價最低?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左焦點,點在橢圓上.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)經(jīng)過圓:上一動點作橢圓的兩條切線,切點分別記為,,直線,分別與圓相交于異于點的,兩點.
(i)求證:;
(ii)求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.
(1)求的普通方程和的直角坐標方程;
(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線過點,傾斜角為.
(1)求曲線的直角坐標方程與直線l的參數(shù)方程;
(2)設(shè)直線與曲線交于,兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com