【題目】某公司采購了一批零件,為了檢測這批零件是否合格,從中隨機抽測120個零件的長度(單位:分米),按數(shù)據(jù)分成,,,6組,得到如圖所示的頻率分布直方圖,其中長度大于或等于1.59分米的零件有20個,其長度分別為1.591.59,1.611.61,1.621.63,1.63,1.64,1.65,1.651.651.65,1.661.67,1.681.69,1.691.71,1.721.74,以這120個零件在各組的長度的頻率估計整批零件在各組長度的概率.

1)求這批零件的長度大于1.60分米的頻率,并求頻率分布直方圖中,,的值;

2)若從這批零件中隨機選取3個,記為抽取的零件長度在的個數(shù),求的分布列和數(shù)學(xué)期望;

3)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布.如果這批零件的長度(單位:分米)滿足近似于正態(tài)分布的概率分布,則認為這批零件是合格的將順利被簽收;否則,公司將拒絕簽收.試問,該批零件能否被簽收?

【答案】1,;(2)分布列見解析,2.1;(3)能被該公司簽收.

【解析】

1)根據(jù)120件樣本零件中長度大于1.60分米的共有18件即可求出頻率,根據(jù)所給數(shù)據(jù)分別求出兩組的頻率可得m,n,再根據(jù)頻率之和為1求出t即可;

2)由題意從這批零件中隨機選取1件,長度在的概率,且服從二項分布,即可求解;、

3)根據(jù)題意,驗證零件數(shù)據(jù)對于是否成立即可求解.

1)由題意可知120件樣本零件中長度大于1.60分米的共有18件,

則這批零件的長度大于1.60分米的頻率為

為零件的長度,則,

,

,.

2)由(1)可知從這批零件中隨機選取1件,長度在的概率.

且隨機變量服從二項分布,

,,

故隨機變量的分布列為

0

1

2

3

0.027

0.189

0.441

0.343

(或.

3)由題意可知,

;

,

因為,

所以這批零件的長度滿足近似于正態(tài)分布的概率分布.

應(yīng)認為這批零件是合格的,將順利被該公司簽收.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,四點,,中恰有三個點在橢圓C上,左、右焦點分別為F1、F2

1)求橢圓C的方程;

2)過左焦點F1且不平行坐標軸的直線l交橢圓于P、Q兩點,若PQ的中點為N,O為原點,直線ON交直線x=﹣3于點M,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為原點,拋物線的準線與y軸的交點為H,P為拋物線C上橫坐標為4的點,已知點P到準線的距離為5.

1)求C的方程;

2)過C的焦點F作直線l與拋物線C交于AB兩點,若以AH為直徑的圓過B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為直角梯形,AB//CD,是以為斜邊的等腰直角三角形,且平面平面ABCD,點F滿足,.

1)試探究為何值時,CE//平面BDF,并給予證明;

2)在(1)的條件下,求直線AB與平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點,點在橢圓.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)經(jīng)過圓上一動點作橢圓的兩條切線,切點分別記為,,直線,分別與圓相交于異于點兩點.

i)當直線,的斜率都存在時,記直線,的斜率分別為,.求證:

ii)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】發(fā)展“會員”、提供優(yōu)惠,成為不少實體店在網(wǎng)購沖擊下吸引客流的重要方式.某連鎖店為了吸引會員,在2019年春節(jié)期間推出一系列優(yōu)惠促銷活動.抽獎返現(xiàn)便是針對“白金卡會員”、“金卡會員”、“銀卡會員”、“基本會員”不同級別的會員享受不同的優(yōu)惠的一項活動:“白金卡會員”、“金卡會員”、“銀卡會員”、“基本會員”分別有4次、3次、2次、1次抽獎機會.抽獎機如圖:抽獎?wù)叩谝淮伟聪鲁楠勬I,在正四面體的頂點出現(xiàn)一個小球,再次按下抽獎鍵,小球以相等的可能移向鄰近的頂點之一,再次按下抽獎鍵,小球又以相等的可能移向鄰近的頂點之一……每一個頂點上均有一個發(fā)光器,小球在某點時,該點等可能發(fā)紅光或藍光,若出現(xiàn)紅光則獲得2個單位現(xiàn)金,若出現(xiàn)藍光則獲得3個單位現(xiàn)金.

1)求“銀卡會員”獲得獎金的分布列;

2表示第次按下抽獎鍵,小球出現(xiàn)在點處的概率.

,,的值;

寫出關(guān)系式,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為),M為該曲線上的任意一點.

1)當時,求M點的極坐標;

2)將射線OM繞原點O逆時針旋轉(zhuǎn)與該曲線相交于點N,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,且,.

(1)證明:平面平面;

(2)有一動點在底面的四條邊上移動,求三棱錐的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐朝的狩獵景象浮雕銀杯如圖1所示.其浮雕臨摹了國畫、漆繪和墓室壁畫,體現(xiàn)了古人的智慧與工藝.它的盛酒部分可以近似地看作是半球與圓柱的組合體(假設(shè)內(nèi)壁表面光滑,忽略杯壁厚度),如圖2所示.已知球的半徑為R,酒杯內(nèi)壁表面積為,設(shè)酒杯上部分(圓柱)的體積為,下部分(半球)的體積為,則

A.2B.C.1D.

查看答案和解析>>

同步練習冊答案