(1)已知等差數(shù)列,),求證:仍為等差數(shù)列;
(2)已知等比數(shù)列),類(lèi)比上述性質(zhì),寫(xiě)出一個(gè)真命題并加以證明.


(1)等差數(shù)列的定義運(yùn)用,根據(jù)相鄰兩項(xiàng)的差為定值,來(lái)證明。
(2)若為等比數(shù)列,),,則為等比數(shù)列

解析試題分析:證明:(1),     2分
,    4分
為等差數(shù)列為常數(shù),    6分
所以仍為等差數(shù)列;   7分
(2)類(lèi)比命題:若為等比數(shù)列,),,則為等比數(shù)列
9分
證明:,   11分,為常數(shù),   13分為等比數(shù)列   14分
考點(diǎn):等差數(shù)列
點(diǎn)評(píng):考查了類(lèi)比推理的運(yùn)用,以及等差數(shù)列的定義,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等差數(shù)列中,,公差為整數(shù),若,
(2)求前項(xiàng)和的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無(wú)關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),(1)求的通項(xiàng)公式.(2)記數(shù)列,的前三項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列滿(mǎn)足。
(Ⅰ)若是等差數(shù)列,求其通項(xiàng)公式;
(Ⅱ)若滿(mǎn)足的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題共14分)
在單調(diào)遞增數(shù)列中,,不等式對(duì)任意都成立.
(Ⅰ)求的取值范圍;
(Ⅱ)判斷數(shù)列能否為等比數(shù)列?說(shuō)明理由;
(Ⅲ)設(shè),,求證:對(duì)任意的,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知數(shù)列中,,,且
(1)設(shè),求是的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式;
(3)若的等差中項(xiàng),求的值,并證明:對(duì)任意的,的等差中項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是一個(gè)等差數(shù)列,且,
(Ⅰ)求的通項(xiàng);  (Ⅱ)求前n項(xiàng)和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)
已知是遞增的等差數(shù)列,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)
已知數(shù)列為等差數(shù)列,公差是數(shù)列的前項(xiàng)和, 且.
(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案