已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無(wú)關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),(1)求的通項(xiàng)公式.(2)記數(shù)列,的前三項(xiàng)和為,求證:

(1) ;
(2) 。

解析試題分析:(1)是一個(gè)與無(wú)關(guān)的常數(shù)  2分
  4分
………6分
(2)  8分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/72/d/1q7wl4.png" style="vertical-align:middle;" />
  12分
所以:  12分
考點(diǎn):本題主要考查等差中項(xiàng)、等比數(shù)列的的基礎(chǔ)知識(shí),“放縮法”,不等式的證明。
點(diǎn)評(píng):中檔題,本題綜合考查等差數(shù)列、等比數(shù)列的基礎(chǔ)知識(shí),本解答從確定通項(xiàng)公式入手,明確了所研究數(shù)列的特征!胺纸M求和法”、“錯(cuò)位相消法”、“裂項(xiàng)相消法”是高考常?嫉綌(shù)列求和方法。先求和,再利用“放縮法”證明不等式,是常用方法。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知遞增等差數(shù)列前3項(xiàng)的和為,前3項(xiàng)的積為8,
(1)求等差數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,當(dāng)時(shí),總有成立,且
(Ⅰ)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列滿足,。
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)求的前項(xiàng)和及使得最大的序號(hào)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)的和
(2)令,求的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{}是等差數(shù)列,,時(shí),若自然數(shù)滿足,使得成等比數(shù)列,(1)求數(shù)列{}的通項(xiàng)公式;(2)求數(shù)列的通項(xiàng)公式及其前n項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{}滿足,且
(1)求證:數(shù)列{}是等差數(shù)列;
(2)求數(shù)列{}的通項(xiàng)公式;
(3)設(shè)數(shù)列{}的前項(xiàng)之和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)已知等差數(shù)列,),求證:仍為等差數(shù)列;
(2)已知等比數(shù)列),類比上述性質(zhì),寫出一個(gè)真命題并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列中的、
(1)求數(shù)列的通項(xiàng)公式; (2)數(shù)列的前n項(xiàng)和為

查看答案和解析>>

同步練習(xí)冊(cè)答案