成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列中的、.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前n項(xiàng)和為,求證:數(shù)列是等比數(shù)列.

(1)(2)證明見(jiàn)解析.

解析試題分析:(1)設(shè)成等差數(shù)列的三個(gè)正數(shù)分別為,可得,又成等比,可得方程,則等比數(shù)列的三項(xiàng)進(jìn)一步求公比,可得通項(xiàng)公式.(2)等比數(shù)列前n項(xiàng)和為,由可知數(shù)列是等比數(shù)列.
試題解析:解:(1)設(shè)成等差數(shù)列的三個(gè)正數(shù)分別為
依題意,得
所以中的依次為
依題意,有(舍去)
的第3項(xiàng)為5,公比為2.

所以是以為首項(xiàng),2為以比的等比數(shù)列,其通項(xiàng)公式為   6分
(2)數(shù)列的前項(xiàng)和,即
所以
所以,數(shù)列是等比數(shù)列.               12分
考點(diǎn):等差數(shù)列定義,等比數(shù)列的定義,等比數(shù)列的前n項(xiàng)和公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足.
(1)求的通項(xiàng)公式;
(2)求的前項(xiàng)和;
(3)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知首項(xiàng)為的等比數(shù)列不是遞減數(shù)列,其前n項(xiàng)和為,且成等差數(shù)列。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的最大項(xiàng)的值與最小項(xiàng)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知正項(xiàng)數(shù)列滿足:,
(1)求通項(xiàng);
(2)若數(shù)列滿足,求數(shù)列的前和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列{}中,,
(1)求數(shù)列的通項(xiàng)公式
(2)設(shè)),求數(shù)列的前10項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列的各項(xiàng)均為正數(shù),且成等差數(shù)列,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知,記,
,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

從數(shù)列中抽出一些項(xiàng),依原來(lái)的順序組成的新數(shù)列叫數(shù)列的一個(gè)子列.
(1)寫(xiě)出數(shù)列的一個(gè)是等比數(shù)列的子列;
(2)若是無(wú)窮等比數(shù)列,首項(xiàng),公比,則數(shù)列是否存在一個(gè)子列
為無(wú)窮等差數(shù)列?若存在,寫(xiě)出該子列的通項(xiàng)公式;若不存在,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的公差為,且.若設(shè)是從開(kāi)始的前項(xiàng)數(shù)列的和,即,,如此下去,其中數(shù)列是從第開(kāi)始到第)項(xiàng)為止的數(shù)列的和,即
(1)若數(shù)列,試找出一組滿足條件的,使得: ;
(2)試證明對(duì)于數(shù)列,一定可通過(guò)適當(dāng)?shù)膭澐,使所得的?shù)列中的各數(shù)都為平方數(shù);
(3)若等差數(shù)列.試探索該數(shù)列中是否存在無(wú)窮整數(shù)數(shù)列
,使得為等比數(shù)列,如存在,就求出數(shù)列;如不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列an求a1+a2+a3+a4+…+a99+a100的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案