【題目】在平面直角坐標系xOy中,已知中心在原點,焦點在x軸上的雙曲線C的離心率為 ,且雙曲線C與斜率為2的直線l有一個公共點P(﹣2,0).
(1)求雙曲線C的方程及它的漸近線方程;
(2)求以直線l與坐標軸的交點為焦點的拋物線的標準方程.
【答案】
(1)解:由題意,設雙曲線的方程為 ﹣ =1(a,b>0).
∵點P(﹣2,0)在雙曲線上,∴a=2.
∵雙曲線C的離心率為 ,∴c=2 .
∵c2=a2+b2,∴b=2.
∴雙曲線的方程為: ﹣ =1,
其漸近線方程為:y=±x
(2)解:由題意,直線l的方程為y=2(x+2),即y=2x+4,
直線l與坐標軸交點分別為F1(﹣2,0),F2(0,4).
∴以F1(﹣2,0)為焦點的拋物線的標準方程為y2=﹣8x;
以F2(0,4)為焦點的拋物線的標準方程為x2=16y
【解析】(1)由題意,設雙曲線的方程為 ﹣ =1(a,b>0).由點P(﹣2,0)在雙曲線上,可得a=2.利用 = ,可得c.利用c2=a2+b2 , 可得b.即可得出方程及其漸近線方程.(2)由題意,直線l的方程為y=2(x+2),可得直線l與坐標軸交點分別為F1(﹣2,0),F2(0,4).即可得出相應的拋物線方程.
科目:高中數學 來源: 題型:
【題目】下列給出函數f(x)與g(x)的各組中,是同一個關于x的函數的是( )
A.f(x)=x﹣1,g(x)=
B.f(x)=2x﹣1,g(x)=2x+1
C.f(x)=x2 , g(x)=
D.f(x)=1,g(x)=x0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lg(2+x)+lg(2﹣x).
(1)求函數f(x)的定義域并判斷函數f(x)的奇偶性;
(2)記函數g(x)= +3x,求函數g(x)的值域;
(3)若不等式 f(x)>m有解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=,AC=3, BC=2,P是△ABC內的一點.
(1)若P是等腰直角三角形PBC的直角頂點,求PA的長;
(2)若∠BPC=,設∠PCB=θ,求△PBC的面積S(θ)的解析式,并求S(θ)的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義域為R的奇函數 (a為實數). (Ⅰ)求a的值;
(Ⅱ)判斷f(x)的單調性(不必證明),并求出f(x)的值域;
(Ⅲ)若對任意的x∈[1,4],不等式f(k﹣ )+f(2﹣x)>0恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前項和為, , .等 差數列中, ,且公差.
(Ⅰ)求數列的通項公式;
(Ⅱ)是否存在正整數,使得?.若存在,求出的最小值;若 不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年3月9日至15日,谷歌人工智能系統(tǒng)“阿爾法”迎戰(zhàn)圍棋冠軍李世石,最終結果“阿爾法”以總比分4比1戰(zhàn)勝李世石.許多人認為這場比賽是人類的勝利,也有許多人持反對意見,有網友為此進行了調查,在參加調查的2548名男性中有1560名持反對意見,2452名女性中有1200名持反對意見,在運用這些數據說明“性別”對判斷“人機大戰(zhàn)是人類的勝利”是否有關系時,應采用的統(tǒng)計方法是( )
A.莖葉圖
B.分層抽樣
C.獨立性檢驗
D.回歸直線方程
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com