【題目】已知函數(shù)y= +lg(2﹣x)的定義域是集合M,集合N={x|x(x﹣3)<0}
(1)求M∪N;
(2)求(RM)∩N.

【答案】
(1)解:函數(shù)y= +lg(2﹣x)的定義域?yàn)?

M={x| }={x|﹣1≤x<2},

集合N={x|x(x﹣3)<0}={x|0<x<3}

M∪N={x|﹣1≤x<3}


(2)解:RM={x|x<﹣1或x≥2},

∴(CRM)∩N={x|2≤x<3}


【解析】求出函數(shù)y的定義域M,化簡(jiǎn)集合N,(1)根據(jù)并集的定義計(jì)算即可;(2)根據(jù)補(bǔ)集與交集的定義計(jì)算即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解集合的并集運(yùn)算的相關(guān)知識(shí),掌握并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立,以及對(duì)交、并、補(bǔ)集的混合運(yùn)算的理解,了解求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:
①函數(shù)y= 是偶函數(shù),但不是奇函數(shù);
②若lna<1成立,則a的取值范圍是(﹣∞,e);
③函數(shù)f(x)=ax+1﹣2(a>0,a≠1)的圖象過(guò)定點(diǎn)(﹣1,﹣1);
④方程x2+(a﹣3)x+a=0的有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0;
⑤函數(shù)f(x)=loga(6﹣ax)(a>0,a≠1)在[0,2]上為減函數(shù),則1<a<3.
其中正確的個(gè)數(shù)(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0; q:實(shí)數(shù)x滿足2<x≤3.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角AB,C的對(duì)邊分別為a,b,c,若cb=2bcosA

(1)求證:A=2B;

(2)若cosBc=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的圓心在直線x﹣2y=0上.
(1)若圓C與y軸的正半軸相切,且該圓截x軸所得弦的長(zhǎng)為2 ,求圓C的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,直線l:y=﹣2x+b與圓C交于兩點(diǎn)A,B,若以AB為直徑的圓過(guò)坐標(biāo)原點(diǎn)O,求實(shí)數(shù)b的值;
(3)已知點(diǎn)N(0,3),圓C的半徑為3,且圓心C在第一象限,若圓C上存在點(diǎn)M,使MN=2MO(O為坐標(biāo)原點(diǎn)),求圓心C的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2(16x+k)﹣2x (k∈R)是偶函數(shù).
(1)求k;
(2)若不等式m﹣1≤f(x)≤2m+log217在x∈[﹣1, ]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 , 的夾角為60°, , ,當(dāng)實(shí)數(shù)k為何值時(shí),
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)已知函數(shù)

(1)若x=2是函數(shù)f(x)的極值點(diǎn),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;

(2)若函數(shù)f(x)在 上為單調(diào)增函數(shù),求a的取值范圍;

(3)設(shè)m,n為正實(shí)數(shù),且m>n,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線C的離心率為 ,且雙曲線C與斜率為2的直線l有一個(gè)公共點(diǎn)P(﹣2,0).
(1)求雙曲線C的方程及它的漸近線方程;
(2)求以直線l與坐標(biāo)軸的交點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案