【題目】若一個四位數(shù)的各位數(shù)字相加和為10,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“2017”.試問用數(shù)字0,1,2,3,4,5,6,7組成的無重復(fù)數(shù)字且大于2017的“完美四位數(shù)”有( )個.

A. 71B. 66C. 59D. 53

【答案】A

【解析】

根據(jù)題意,分析可得四位數(shù)字相加和為10的情況有0、1、3、6,0、14、5,0、1

2、7,02、35,12、3、4;共5種情況,據(jù)此分5種情況討論,依次求出每種情

況下大于2017的“完美四位數(shù)”的個數(shù),將其相加即可得答案.

根據(jù)題意,四位數(shù)字相加和為10的情況有0、13、60、14、50、12、7,

02、35,12、3、4;共5種情況,

則分5種情況討論:

①、四個數(shù)字為01、3、6時,

千位數(shù)字可以為36,有2種情況,將其余3個數(shù)字全排列,安排在百位、十位、個位,

種情況,此時有個“完美四位數(shù)”,

、四個數(shù)字為0、14、5時,

千位數(shù)字可以為45,有2種情況,將其余3個數(shù)字全排列,安排在百位、十位、個位,

種情況,此時有個“完美四位數(shù)”,

、四個數(shù)字為0、12、7時,

千位數(shù)字為7時,將其余3個數(shù)字全排列,安排在百位、十位、個位,有種情況,

千位數(shù)字為2時,有20712107、2170、2701、2710,共5種情況,此時有個“完

美四位數(shù)”,

、四個數(shù)字為0、2、3、5時,

千位數(shù)字可以為235,有3種情況,將其余3個數(shù)字全排列,安排在百位、十位、個

位,有種情況,此時有個“完美四位數(shù)”,

、四個數(shù)字為1、2、3、4時,

千位數(shù)字可以為342,有3種情況,將其余3個數(shù)字全排列,安排在百位、十位、個

位,有種情況,此時有個“完美四位數(shù)”,

則一共有個“完美四位數(shù)”,

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體 ABCDEF中,四邊形ABCD是邊長為2的菱形,且平面ABCD⊥平面DCE.AF∥DE,且AF=DE=2,BF=2

(1)求證:AC⊥BE;

(2)若點F到平面DCE的距離為,求直線EC與平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為1+cos2θ=8sinθ

1)求曲線C的普通方程;

2)直線l的參數(shù)方程為,t為參數(shù)直線y軸交于點F與曲線C的交點為A,B,當(dāng)|FA||FB|取最小值時,求直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩種棉花中各抽測了25根棉花的纖維長度(單位: ) 組成一個樣本,且將纖維長度超過315的棉花定為一級棉花.設(shè)計了如下莖葉圖:

(1)根據(jù)以上莖葉圖,對甲、乙兩種棉花的纖維長度作比較,寫出兩個統(tǒng)計結(jié)論(不必計算);

(2)從樣本中隨機(jī)抽取甲、乙兩種棉花各2根,求其中恰有3根一級棉花的概率;

(3)用樣本估計總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機(jī)抽取1根,求其中一級棉花根數(shù)X的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4一4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線 是圓心的極坐標(biāo)為()且經(jīng)過極點的圓

(1)求曲線C1的極坐標(biāo)方程和C2的普通方程;

(2)已知射線分別與曲線C1,C2交于點A,B(點B異于坐標(biāo)原點O),求線段AB的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項和,且a10=19,S10=100;數(shù)列{bn}對任意nN*,總有b1b2b3bn1bn=an+2成立.

(1)求數(shù)列{an}和{bn}的通項公式;

(2)記cn=(﹣1n,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙十一網(wǎng)購狂歡節(jié)源于淘寶商城(天貓)日舉辦的促銷活動,當(dāng)時參與的商家數(shù)量和促銷力度均有限,但營業(yè)額遠(yuǎn)超預(yù)想的效果,于是日成為天貓舉辦大規(guī)模促銷活動的固定日期.如今,中國的雙十一已經(jīng)從一個節(jié)日變成了全民狂歡的電商購物日”.某淘寶電商為分析近雙十一期間的宣傳費用(單位:萬元)和利潤(單位:十萬元)之間的關(guān)系,搜集了相關(guān)數(shù)據(jù),得到下列表格:

(萬元)

(十萬元)

1)請用相關(guān)系數(shù)說明之間是否存在線性相關(guān)關(guān)系(當(dāng)時,說明之間具有線性相關(guān)關(guān)系);

2)建立關(guān)于的線性回歸方程(系數(shù)精確到),預(yù)測當(dāng)宣傳費用為萬元時的利潤.

附參考公式:回歸方程最小二乘估計公式分別為

,,相關(guān)系數(shù)

參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.下圖所示的陽馬中,側(cè)棱底面ABCD,且,則當(dāng)點E在下列四個位置:PA中點、PB中點、PC中點、PD中點時分別形成的四面體中,鱉臑有( )個.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某種細(xì)菌的適宜生長溫度為10℃~25℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:

溫度/℃

12

14

16

18

20

22

24

繁殖數(shù)量/個

20

25

33

27

51

112

194

對數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計量的值,如下表所示:

18

66

3.8

112

4.3

1428

20.5

其中.

(1)請繪出關(guān)于的散點圖,并根據(jù)散點圖判斷哪一個更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);

(3)當(dāng)溫度為25℃時,該種細(xì)菌的繁殖數(shù)量的預(yù)報值為多少?

參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,.

參考數(shù)據(jù):.

查看答案和解析>>

同步練習(xí)冊答案