精英家教網 > 高中數學 > 題目詳情

【題目】已知某種細菌的適宜生長溫度為10℃~25℃,為了研究該種細菌的繁殖數量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數據如下:

溫度/℃

12

14

16

18

20

22

24

繁殖數量/個

20

25

33

27

51

112

194

對數據進行初步處理后,得到了一些統(tǒng)計量的值,如下表所示:

18

66

3.8

112

4.3

1428

20.5

其中,.

(1)請繪出關于的散點圖,并根據散點圖判斷哪一個更適合作為該種細菌的繁殖數量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);

(2)根據(1)的判斷結果及表格數據,建立關于的回歸方程(結果精確到0.1);

(3)當溫度為25℃時,該種細菌的繁殖數量的預報值為多少?

參考公式:對于一組數據,其回歸直線的斜率和截距的最小二成估計分別為,.

參考數據:.

【答案】(1) 更適合作為關于的回歸方程.(2) .(3)245.

【解析】

(1)畫出關于的散點圖,即可作出判定,得到結論.

(2)由(1)因為,得,利用公式求得的值,即可求得回歸方程;

(3)令,求得,即可得到結論.

(1)由題意,關于的散點圖如下圖所示.

更適合作為關于的回歸方程.

(2)由(1)因為,則,

,

,

關于的回歸方程為.

(3)由(2)中的回歸方程,令,求得,

所以當溫度為時,預報值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若一個四位數的各位數字相加和為10,則稱該數為“完美四位數”,如數字“2017”.試問用數字0,1,2,3,4,5,6,7組成的無重復數字且大于2017的“完美四位數”有( )個.

A. 71B. 66C. 59D. 53

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)生產甲、乙兩種產品,已知生產每噸甲產品要用A原料3噸,B原料2噸;生產每噸乙產品要用A原料1噸,B原料3噸.銷售每噸甲產品可獲得利潤5萬元,每噸乙產品可獲得利潤3萬元.該企業(yè)在一個生產周期內消耗A原料不超過13噸,B原料不超過18噸.

1)列出甲、乙兩種產品滿足的關系式,并畫出相應的平面區(qū)域;

2)在一個生產周期內該企業(yè)生產甲、乙兩種產品各多少噸時可獲得利潤最大,最大利潤是多少?

(用線性規(guī)劃求解要畫出規(guī)范的圖形及具體的解答過程)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國南宋數學家楊輝1261年所著的《詳解九章算法》一書里出現了如圖所示的表,即楊輝三角,這是數學史上的一個偉大成就,在“楊輝三角”中,第行的所有數字之和為,若去除所有為1的項,依次構成數列2,3,3,4,6,4,5,10,10,5,…,則此數列的前15項和為( )

A. 110B. 114C. 124D. 125

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在棱長均相等的四棱錐, 為底面正方形的中心, ,分別為側棱,的中點,有下列結論正確的有:( )

A.∥平面B.平面∥平面

C.直線與直線所成角的大小為D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.

(1)求橢圓的方程;

(2)過原點的直線與橢圓交于兩點(不是橢圓的頂點),點在橢圓上,且,直線軸分別交于兩點.

①設直線斜率分別為,證明存在常數使得,并求出的值;

②求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=-ln(x+m).

(1)x=0f(x)的極值點,求m,并討論f(x)的單調性;

2)當m≤2時,證明f(x)>0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如下圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( )

A. 2017年第一季度GDP增速由高到低排位第5的是浙江省.

B. 與去年同期相比,2017年第一季度的GDP總量實現了增長.

C. 去年同期河南省的GDP總量不超過4000億元 .

D. 2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,有三根針和套在一根針上的個金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.

(1)每次只能移動一個金屬片;

(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.

個金屬片從1號針移到3號針最少需要移動的次數記為,則__________

查看答案和解析>>

同步練習冊答案