A. | $\frac{3}{2}$或$\frac{2}{3}$ | B. | $\frac{4}{3}$或$\frac{3}{4}$ | C. | $\frac{5}{3}或\frac{3}{5}$ | D. | $\frac{5}{4}或\frac{4}{5}$ |
分析 圓(x+3)2+(y-2)2=1,關于y軸的對稱圓的方程為圓(x-3)2+(y-2)2=1,故可設入射光線所在直線的方程為:y+3=k(x+2),化為kx-y+2k-3=0.圓心(3,2)到直線的距離d=$\frac{|5k-5|}{\sqrt{{k}^{2}+1}}$=1,即可得出結(jié)論.
解答 解:圓(x+3)2+(y-2)2=1,關于y軸的對稱圓的方程為圓(x-3)2+(y-2)2=1,
故可設入射光線所在直線的方程為:y+3=k(x+2),化為kx-y+2k-3=0.
圓心(3,2)到直線的距離d=$\frac{|5k-5|}{\sqrt{{k}^{2}+1}}$=1,∴k=$\frac{4}{3}$或$\frac{3}{4}$,
故選B.
點評 本題考查了反射光線的性質(zhì)、直線與圓相切的性質(zhì)、點到直線的距離公式、點斜式、對稱點,考查了計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(-2)>f(0)>f(1) | B. | f(-2)>f(1)>f(0) | C. | f(1)>f(0)>f(-2) | D. | f(1)>f(-2)>f(0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[-\frac{1}{2},\frac{1}{2}]$ | B. | $[-\sqrt{2},\sqrt{2}]$ | C. | $(-∞,-\sqrt{2})∪(\sqrt{2},+∞)$ | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{3}{π}$ | C. | $\frac{2}{π}$ | D. | -$\frac{3}{π}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com