已知函數(shù)f(x)=
log2x,x∈[1,4]
(x-5)2+1,x∈(4,7]

(1)請在直角坐標系中畫出函數(shù)f(x)的圖象;
(2)根據(jù)圖象直接寫出該函數(shù)的單調(diào)遞增區(qū)間;
(3)由圖象寫出f(x)的最大值,最小值以及相應的x的值.
考點:分段函數(shù)的應用,函數(shù)的圖象
專題:作圖題,數(shù)形結合,函數(shù)的性質(zhì)及應用
分析:作出函數(shù)f(x)=
log2x,x∈[1,4]
(x-5)2+1,x∈(4,7]
的圖象,注意各段的自變量的取值范圍,由圖象即可得到函數(shù)的遞增區(qū)間,函數(shù)的最值和此時自變量的取值.
解答: 解:(1)作出函數(shù)f(x)=
log2x,x∈[1,4]
(x-5)2+1,x∈(4,7]
的圖象,
(2)由圖象可知,
函數(shù)的單調(diào)遞增區(qū)間是(1,4),(5,7).
(3)f(x)的最大值為5,此時x=7;
最小值為0,此時x=1.
點評:本題考查分段函數(shù)的圖象和應用,考查函數(shù)的單調(diào)性和最值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

空間四邊形ABCD的兩條對角線AC,BD的長分別為4,5,則平行于兩條對角線的截面四邊形EFGH在平移過程中,其周長的取值范圍是( �。�
A、(5,10)
B、(8,10)
C、(3,6)
D、(6,9)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為6,其離心率為
7
4
.若l1,l2是橢圓C的兩條相互垂直的切線,l1,l2的交點為點P.
(1)求橢圓C的方程;
(2)記點P的軌跡為C′,設l1,l2與軌跡C′的異于點P的另一個交點分別為M,N,求△PMN的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:全集U=R,集合A={x|x2-2x-8<0},集合B={x||x-m|<3};
(1)當m=2時,求A∪B;∁UA∩B;
(2)當A∩B=∅,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某高中男子體育小組的100m賽跑成績(單位:s)為:12.1,13.2,12.7,12.8,12.5,12.4,12.7,11.5,11.6,11.7,從這些成績中搜索出小于12.1s的成績,畫出程序框圖,編寫相應程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

編寫一個程序,交換兩個變量A和B的值,并輸出交換前后的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AB=AC=BC=AA1,D,E分別為BC,BB1的中點.
(1)求證:A1B∥平面AC1D;
(2)求證CE⊥平面AC1D;
(3)直線C1A1與平面AC1D所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l與直線2x-4y-3=0垂直,且與兩坐標軸圍成的三角形面積為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足當n>1時,an=
an-1
1+4an-1
,且a1=
1
5

(Ⅰ)求數(shù)列{an}通項公式;
(Ⅱ)試問a1a2是否是數(shù)列{an}中的項?如果是,是第幾項;如果不是,說明理由.

查看答案和解析>>

同步練習冊答案