【題目】若函數(shù)在處取得極大值或極小值,則稱為函數(shù)的極值點.設(shè)函數(shù).
(1)若函數(shù)在上無極值點,求的取值范圍;
(2)求證:對任意實數(shù),在函數(shù)的圖象上總存在兩條切線相互平行;
(3)當(dāng)時,若函數(shù)的圖象上存在的兩條平行切線之間的距離為4,問;這樣的平行切線共有幾組?請說明理由.
【答案】(1)或 (2)詳見解析(3)3組
【解析】
(1)求得導(dǎo)函數(shù),求出的解,題意說明此解不在區(qū)間上,從而得關(guān)于的不等式組,解之可得所求范圍;
(2)從特殊值出發(fā),不妨設(shè),此方程中,必有兩個不等實根,再證明斜率為1的兩條切線不可能重合即可;
(3)設(shè)出切點坐標(biāo),,由得,寫出兩切線方程,求出兩切線間距離由,可化簡為,此方程有三解(可用換元法說明),從而知結(jié)論為3組.
(1)由函數(shù),得,由,得,或,
因函數(shù)在上無極值點,所以或,解得或.
(2)由(1)知,令,則,所以,即對任意實數(shù),總有兩個不同的實數(shù)根,所以不論為何值,函數(shù)在兩點,處的切線平行
設(shè)這兩條切線方程為分別為和,若兩切線重合,則,即,即,而=,化簡得,此時,與矛盾,所以,這兩條切線不重合,綜上,對任意實數(shù),函數(shù)的圖象總存在兩條切線相互平行
(3)當(dāng)時,,由(2)知時,兩切線平行.設(shè),,不妨設(shè),
過點的切線方程為
所以,兩條平行線間的距離,化簡得
,
令,則,即,即,顯然為一解,有兩個異于的正根,所以這樣的有3解,而,所以有3解,所以滿足此條件的平行切線共有3組
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次體育興趣小組的聚會中,要安排6人的座位,使他們在如圖所示的6個椅子中就坐,且相鄰座位(如1與2,2與3)上的人要有共同的體育興趣愛好.現(xiàn)已知這6人的體育興趣愛好如下表所示,且小林坐在1號位置上,則4號位置上坐的是
小林 | 小方 | 小馬 | 小張 | 小李 | 小周 | |
體育興趣愛好 | 籃球,網(wǎng)球,羽毛球 | 足球,排球,跆拳道 | 籃球,棒球,乒乓球 | 擊劍,網(wǎng)球,足球 | 棒球,排球,羽毛球 | 跆拳道,擊劍,自行車 |
A.小方B.小張C.小周D.小馬
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求證:;
(2)討論函數(shù)在R上的零點個數(shù),并求出相對應(yīng)的a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在橢圓上,為坐標(biāo)原點,直線的斜率與直線的斜率乘積為.
(1)求橢圓的方程;
(2)不經(jīng)過點的直線(且)與橢圓交于,兩點,關(guān)于原點的對稱點為(與點不重合),直線,與軸分別交于兩點,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖等腰梯形中,且平面 平面,,為線段的中點.
(1)求證:直線平面;
(2)求證:平面 平面;
(3)若二面角的大小為,求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點,過點作直線、與圓:和拋物線:都相切.
(1)求拋物線的兩切線的方程;
(2)設(shè)拋物線的焦點為,過點的直線與拋物線相交于、兩點,與拋物線的準(zhǔn)線交于點(其中點靠近點),且,求與的面積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上單調(diào)遞增,函數(shù)在上存在單調(diào)遞減區(qū)間.
(1)若“”為真,求實數(shù)的取值范圍;
(2)若“”為真,“”為假,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A是橢圓的上頂點,斜率為的直線交橢圓E于A、M兩點,點N在橢圓E上,且;
(1)當(dāng)時,求的面積;
(2)當(dāng)時,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com