如圖所示,網(wǎng)格紙上小正方形的邊長為1cm,粗實線為某空間幾何體的三視圖,則該幾何體的體積為( 。
A、2cm3
B、4cm3
C、6cm3
D、8cm3
考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:由三視圖可知,兩個這樣的幾何體以俯視圖為底面的四棱錐,求出底面面積和高,代入棱錐體積公式,可得答案.
解答: 解:由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的四棱錐,
其底面面積S=
1
2
×(2+4)×2=6,
高h=2,
故體積V=
1
3
Sh=
1
3
×6×2=4cm3,
故選:B
點評:本題考查的知識點是由三視圖,求體積,其中根據(jù)已知分析出幾何體的形狀是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若不等式|x|<1成立時,不等式1<x-a<4也成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={x|-3≤x≤8},集合A={x|-1≤x<3},B={x|2<x≤5},求:
(1)A∩B;  
(2)A∪(∁UB);
(3)(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1,a2=a(a>0),數(shù)列{bn}滿足:bn=anan+2(n∈N*
(1)若數(shù)列{an}是等差數(shù)列,且b3=45,求a的值及數(shù)列{an}通項公式;
(2)若數(shù)列{an}的等比數(shù)列,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各組函數(shù)相等的是( 。
A、f(x)=
x2-x
x
與g(x)=x-1
B、f(x)=x+1與g(x)=x+x0
C、f(x)=2x+1與g(x)=
4x2+4x+1
D、f(x)=|x-1|與g(t)=
(t-1)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知an=2n-1,bn=(
an+1
an
2,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某商場組織有獎競猜活動,參與者需要先后回答兩道選擇題,問題A有三個選項,問題B有四個選項,但都只有一個選項是正確的,正確回答問題A可獲獎金25元,正確回答問題B可獲獎金30元,活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答正確,則繼續(xù)答題,否則該參與者猜獎活動終止,假設一個參與者在回答問題前,對這兩個問題都很陌生,只能用蒙猜的辦法答題.
(1)如果參與者先回答問題A,求其獲得獎金25元的概率;
(2)試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知遞增等比數(shù)列{an}的前n項和為Sn,a1=1,且S3=2S2+1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=2n-1+an(n∈N*),求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=loga(3x-1)恒過定點
 

查看答案和解析>>

同步練習冊答案