【題目】有兩枚均勻的硬幣和一枚不均勻的硬幣,其中不均勻的硬幣拋擲后出現正面的概率為,小華先拋擲這三枚硬幣,然后小紅再拋擲這三枚硬幣.
(1)求小華拋得一個正面兩個反面且小紅拋得兩個正面一個反面的概率;
(2)若用表示小華拋得正面的個數,求的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域為BCDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路(不考慮寬度)..
(I)求道路BE的長度;
(Ⅱ)求道路AB,AE長度之和的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十八屆五種全會公報指出:努力促進人口均衡發(fā)展,堅持計劃生育的基本國策,完善人口發(fā)展戰(zhàn)略,全面實施一對夫婦可生育兩個孩子的政策,提高生殖保健、婦幼保健、托兒等公共服務水平.為了解適齡公務員對放開生育二胎政策的態(tài)度,某部門隨機調查了100位30到40歲的公務員,得到情況如下表:
男公務員 | 女公務員 | |
生二胎 | 40 | 20 |
不生二胎 | 20 | 20 |
(1)是否有95%以上的把握認為“生二胎與性別有關”,并說明理由;
(2)把以上頻率當概率,若從社會上隨機抽取3位30到40歲的男公務員,記其中生二胎的人數為,求隨機變量的分布列,數學期望.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 為圓的直徑,點在圓上, ,矩形所在的平面與圓所以的平面互相垂直,已知.
(1)求證:平面平面;
(2)當的長為何值時,平面與平面所成的銳二面角的大小為?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數之比為,且成績分布在,分數在以上(含)的同學獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).
(1)填寫下面的列聯表,能否有超過的把握認為“獲獎與學生的文理科有關”?
(2)將上述調査所得的頻率視為概率,現從參賽學生中,任意抽取名學生,記“獲獎”學生人數為,求的分布列及數學期望.
文科生 | 理科生 | 合計 | |
獲獎 | |||
不獲獎 | |||
合計 |
附表及公式:
,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形, 是矩形,平面平面, , , , 為的中點.
(1)求證: 平面;
(2)在線段上是否存在點,使二面角的大小為?若存在,求出的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線,曲線為參數), 以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)若射線分別交于兩點, 求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com