等比數(shù)列{an}中,a2=18,a4=8,則數(shù)列{an}的公比為(  )
A、
2
3
B、
3
2
C、±
3
2
D、±
2
3
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)等比數(shù)列{an}的公比為q,可得q2=
a4
a2
,開方可得.
解答: 解:設(shè)等比數(shù)列{an}的公比為q,
則q2=
a4
a2
=
8
18
=
4
9
,
∴q=±
2
3

故選:D
點(diǎn)評(píng):本題考查等比數(shù)列的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) 已知直線l1:2x+y-1=0,l2:x-3y+5=0,則直線l1與l2的夾角的大小是
 
.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的個(gè)數(shù)是(  )
①已知復(fù)數(shù)z=i(1-i),z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第四象限;
②若x,y是實(shí)數(shù),則“x2≠y2”的充要條件是“x≠y或x≠-y”;
③命題P:“?x0∈R,
x
2
0
-x0-1>0”的否定¬P:“?x∈R,x2-x-1≤0”.
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x≥0
y≥0
y≤2
2x+y≤6
,則目標(biāo)函數(shù)z=x+2y的最大值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x≤2},B={x|x2<4x},則A∩∁RB=( 。
A、(-∞,0]
B、(-∞,0)
C、[-1,1]
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為( 。
A、2
B、1
C、
2
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
x-3
x-1
≥0的解集是(  )
A、{x|x≤1或x≥3}
B、{x|x<1或x≥3}
C、{x|1<x≤3}
D、{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y∈R,且
1-x≤0
2y-x-3≤0
x-y≤0
,則z=x+2y的最小值等于( 。
A、2B、3C、5D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,a3+2是a2與a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)假設(shè)bn=
an
(an+1)(an+1+1)
,其數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案