【題目】已知非空集合滿足.若存在非負(fù)整數(shù),使得當(dāng)時(shí),均有,則稱集合具有性質(zhì).記具有性質(zhì)的集合的個(gè)數(shù)為.

(1)求的值;

(2)求的表達(dá)式.

【答案】12

【解析】

試題(1)因?yàn)?/span>,所以,對(duì)應(yīng)的分別為,故.(2)通過研究相鄰兩項(xiàng)之間關(guān)系,得遞推關(guān)系,進(jìn)而可求通項(xiàng):設(shè)當(dāng)時(shí),具有性質(zhì)的集合的個(gè)數(shù)為,當(dāng)時(shí),,關(guān)鍵計(jì)算關(guān)于的表達(dá)式,當(dāng)為偶數(shù)時(shí),為奇數(shù),;當(dāng)為奇數(shù)時(shí),為偶數(shù),,最后根據(jù)累加法解得

試題解析:(1)當(dāng)時(shí),具有性質(zhì)

對(duì)應(yīng)的分別為,故

2)可知當(dāng)時(shí),具有性質(zhì)的集合的個(gè)數(shù)為

則當(dāng)時(shí),

其中表達(dá)也具有性質(zhì)的集合的個(gè)數(shù),

下面計(jì)算關(guān)于的表達(dá)式,

此時(shí)應(yīng)有,即,故對(duì)分奇偶討論,

當(dāng)為偶數(shù)時(shí),為奇數(shù),故應(yīng)該有

則對(duì)每一個(gè),必然屬于集合,且,,

共有組數(shù),每一組數(shù)中的兩個(gè)數(shù)必然同時(shí)屬于或不屬于集合,

故對(duì)每一個(gè),對(duì)應(yīng)的具有性質(zhì)的集合的個(gè)數(shù)為

,

所以

當(dāng)為奇數(shù)時(shí),為偶數(shù),故應(yīng)該有

同理,

綜上,可得,

由累加法解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某民航部門統(tǒng)計(jì)的2019年春運(yùn)期間12個(gè)城市售出的往返機(jī)票的平均價(jià)格以及相比上年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖表如圖所示,根據(jù)圖表,下面敘述正確的是( )

A. 同去年相比,深圳的變化幅度最小且廈門的平均價(jià)格有所上升

B. 天津的平均價(jià)格同去年相比漲幅最大且2019年北京的平均價(jià)格最高

C. 2019年平均價(jià)格從高到低居于前三位的城市為北京、深圳、廣州

D. 同去年相比,平均價(jià)格的漲幅從高到低居于前三位的城市為天津、西安、南京

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕成本為50元,每個(gè)蛋糕的售價(jià)為100元,如果當(dāng)天賣不完,剩余的蛋糕作垃圾處理.現(xiàn)搜集并整理了100天生日蛋糕的日需求量(單位:個(gè)),得到如圖所示的柱狀圖.100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.

(1)若蛋糕店一天制作17個(gè)生日蛋糕.

①求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量的函數(shù)解析式;

②求當(dāng)天的利潤不低于600元的概率.

2)若蛋糕店計(jì)劃一天制作16個(gè)或17個(gè)生日蛋糕,請(qǐng)你以蛋糕店一天利潤的平均值作為決策依據(jù),應(yīng)該制作16個(gè)還是17個(gè)生日蛋糕?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程是為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(1)求曲線交點(diǎn)的極坐標(biāo);

(2)、兩點(diǎn)分別在曲線上,當(dāng)最大時(shí),求的面積(為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程及曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn)、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在梯形中(圖1),,,過、分別作的垂線,垂足分別為、,且,將梯形沿同側(cè)折起,使得,且,得空間幾何體 (圖2).直線與平面所成角的正切值是.

(1)求證:平面

(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在梯形中,,的中點(diǎn),線段交于點(diǎn)(如圖1.沿折起到的位置,使得二面角為直二面角(如圖2.

1)求證:平面

2)線段上是否存在點(diǎn),使得與平面所成角的正弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)A型進(jìn)口車關(guān)稅稅率在2002年是100%,在2007年是25%,2002A型進(jìn)口車每輛價(jià)格為64萬元(其中含32萬元關(guān)稅稅款)

1)已知與A型車性能相近的B型國產(chǎn)車,2002年每輛價(jià)格為46萬元,若A型車的價(jià)格只受關(guān)稅降低的影響,為了保證2007B型車的價(jià)格不高于A型車價(jià)格的90%B型車價(jià)格要逐年減低,問平均每年至少下降多少萬元?

2)某人在2002年將33萬元存入銀行,假設(shè)銀行扣利息稅后的年利率為1.8%5年內(nèi)不變),且每年按復(fù)利計(jì)算(上一年的利息計(jì)入第二年的本金),那么5年到期時(shí)這筆錢連本帶息是否一定夠買按(1)中所述降價(jià)后的B型車一輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無價(jià)之寶.改革開放以來,有的地方領(lǐng)導(dǎo)片面追求政績(jī),對(duì)森林資源野蠻開發(fā)受到嚴(yán)肅查處事件時(shí)有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進(jìn)甲、乙兩種樹苗,并對(duì)甲、乙兩種樹苗各抽測(cè)了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:

(1)據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;

(2)據(jù)莖葉圖,運(yùn)用統(tǒng)計(jì)學(xué)知識(shí)分析比較甲、乙兩種樹苗高度整齊情況.

查看答案和解析>>

同步練習(xí)冊(cè)答案