【題目】某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長,最近個季度的銷售額數(shù)據(jù)統(tǒng)計如下表(其中表示年第一季度,以此類推):

季度

季度編號x

銷售額y(百萬元)

1)公司市場部從中任選個季度的數(shù)據(jù)進行對比分析,求這個季度的銷售額都超過千萬元的概率;

2)求關(guān)于的線性回歸方程,并預測該公司的銷售額.

附:線性回歸方程:其中,

參考數(shù)據(jù):.

【答案】1;(2關(guān)于的線性回歸方程為,預測該公司的銷售額為百萬元.

【解析】

1)列舉出所有的基本事件,并確定事件“這個季度的銷售額都超過千萬元”然后利用古典概型的概率公式可計算出所求事件的概率;

2)計算出的值,然后將表格中的數(shù)據(jù)代入最小二乘法公式,計算出的值,可得出關(guān)于的線性回歸方程,然后將代入回歸直線方程即可得出該公司的銷售額的估計值.

1)從個季度的數(shù)據(jù)中任選個季度,這個季度的銷售額有種情況:、、、、、、、、、

設“這個季度的銷售額都超過千萬元”為事件,事件包含、、,種情況,所以;

2,,

,.

所以關(guān)于的線性回歸方程為,

,得(百萬元)

所以預測該公司的銷售額為百萬元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某地統(tǒng)計局調(diào)查了10000名居民的月收入,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖如圖所示。

(1)求居民月收入在[3000,3500)內(nèi)的頻率;

(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的月收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000中用分層抽樣的方法抽出100人做進一步分析,則應從月收入在[2500,3000)內(nèi)的居民中抽取多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】半期考試后,班長小王統(tǒng)計了50名同學的數(shù)學成績,繪制頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖,估計這50名同學的數(shù)學平均成績;

用分層抽樣的方法從成績低于115的同學中抽取6名,再在抽取的這6名同學中任選2名,求這兩名同學數(shù)學成績均在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,平面底面,的中點,是棱上的點,,,

1求證:平面平面;

2,求二面角的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司有男性職工64名,一次體檢后,將他們的體重(單位:kg)分組為:,,,,,繪制出頻率分布直方圖如圖,圖中從左到右的前3個小組的頻率之比為.

1)求這64名男職工中,體重小于60kg的人數(shù);

2)從體重在kg范圍的男職工中用分層抽樣的方法選取6名,再從這6名男職工中隨機選取2名,記“至少有一名男職工體重大于65kg”為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,為線段的中點,為線段上的一點.

(1)證明:平面平面.

(2)若,二面角的余弦值為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點在圓柱的底面上,,,分別為,的直徑,且.若圓柱的體積,,回答下列問題:

1)求三棱錐的體積.

2)在線段AP上是否存在一點M,使異面直線OM所成的角的余弦值為?若存在,請指出點M的位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其圖象的相鄰兩條對稱軸之間的距離為

1)求函數(shù)的解析式及對稱中心;

2)將函數(shù)的圖象向左平移個單位長度,再向上平移個單位長度得到函數(shù)的圖象,若關(guān)于x的方程在區(qū)間上有兩個不相等的實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知AB為橢圓E:ab>0)的長軸,過坐標原點O且傾斜角為135°的直線交橢圓EC,D兩點,且Dx軸上的射影D'恰為橢圓E的長半軸OB的中點

(1)求橢圓E的離心率;

(2)若AB=8,不過第四象限的直線l與橢圓E和以CD為直徑的圓均相切,求直線l的方程

查看答案和解析>>

同步練習冊答案