【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)函數(shù)在上的最大值.
①求;
②若過點(diǎn)可作出曲線的三條切線,求的范圍.
【答案】(1)見解析;(2)①;②或且.
【解析】
(1)求,令便得到,或,所以討論和2的關(guān)系,即判斷和0的關(guān)系:分,,三種情況,判斷每種情況下的的符號(hào),從而判斷的單調(diào)性;
(2)①對(duì)應(yīng)(1)中的三種情況:,,,判斷在每種情況下在,上的單調(diào)性,根據(jù)單調(diào)性求函數(shù)在,上的最大值;
②要作的三條切線,則圖象應(yīng)是曲線,所以,,求,設(shè)切點(diǎn)為,將切點(diǎn)代入切線方程,則這個(gè)關(guān)于的方程有三個(gè)不同的實(shí)數(shù)根,再利用導(dǎo)數(shù)研究三次方程根的情況,即可求得的取值范圍.
(1),令得,,或;
若,即,
,或時(shí),;時(shí),;
在,上單調(diào)遞增,在,上單調(diào)遞減;
若,即,,
函數(shù)在上單調(diào)遞增;
若,,,或時(shí),;時(shí),;
在,上單調(diào)遞增,在單調(diào)遞減;
(2)①由(1)知:
當(dāng)時(shí),在,單調(diào)遞減,在,單調(diào)遞增;
對(duì)于此時(shí)的的最大值比較,即可;
∵,
時(shí),,∴;
∵時(shí),,∴;
當(dāng)時(shí),在,上單調(diào)遞增,∴;
當(dāng)時(shí),在,上單調(diào)遞增,∴;
∴;
②根據(jù)題意,,,
所以設(shè)過點(diǎn)所作切線的切點(diǎn)為,,斜率為;
切線方程為,
∵點(diǎn)在切線上,所以,
將上式整理成:,
則關(guān)于的方程有三個(gè)不同的實(shí)數(shù)根,且;
令,
則應(yīng)有三個(gè)不同的零點(diǎn),,令,則,或,,中一個(gè)是極大值,一個(gè)是極小值;
時(shí),是極小值,是極大值,;
解得;
令,,令,得,,或4;
在,上單調(diào)遞減,在,上單調(diào)遞增;
可求得,,時(shí),,,且時(shí),;
的解是,;
時(shí),是極大值,是極小值,;
解得,;
∴的解是,且,,且;
綜上得的取值范圍是或且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,過橢圓的左焦點(diǎn)和上頂點(diǎn)的直線與圓相切.
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓交于、兩點(diǎn),點(diǎn)與原點(diǎn)關(guān)于直線對(duì)稱,試求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且csin2B﹣bsin(A+B)=0
(1)求角B的大;
(2)設(shè)a=4,c=6,求sinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)的圖象沿軸向左平移個(gè)單位,縱坐標(biāo)伸長(zhǎng)到原來的2倍(橫坐標(biāo)不變)后得到函數(shù)的圖象,對(duì)于函數(shù)有以下四個(gè)判斷:
①該函數(shù)的解析式為;;
②該函數(shù)圖象關(guān)于點(diǎn)對(duì)稱;
③該函數(shù)在[,上是增函數(shù);
④函數(shù)在上的最小值為,則.
其中,正確判斷的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、、,對(duì)于給定的正整數(shù),記,.若對(duì)任意的正整數(shù)滿足:,且是等差數(shù)列,則稱數(shù)列為“”數(shù)列.
(1)若數(shù)列的前項(xiàng)和為,證明:為數(shù)列;
(2)若數(shù)列為數(shù)列,且,求數(shù)列的通項(xiàng)公式;
(3)若數(shù)列為數(shù)列,證明:是等差數(shù)列 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為.
(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)的極值為正數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:函數(shù),其中.
(Ⅰ)若是的極值點(diǎn),求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若在上的最大值是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時(shí)代的偉大科學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢(shì)既同,則積不容異”. 其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為,則“相等”是“總相等”的
A. 充分而不必要條件B. 必要而不充分條件
C. 充分必要條件D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項(xiàng)和為,記,數(shù)列滿足,,且數(shù)列的前項(xiàng)和為.
(1)① 計(jì)算,的值;
② 猜想,滿足的關(guān)系式,并用數(shù)學(xué)歸納法加以證明;
(2)若數(shù)列通項(xiàng)公式為,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com