若實數(shù)x,y滿足
x-y+1≥0
x≤0
x+y≥0
,則z=log3(x+2y+25)的最大值是( 。
A、3
B、log325
C、log317
D、log337-log32
考點:簡單線性規(guī)劃
專題:
分析:先畫出約束條件的可行域,再求出可行域中各角點的坐標,將各點坐標代入目標函數(shù)的解析式,分析后易得目標函數(shù)z=2x+y的最大值.
解答: 解:由約束條件
x-y+1≥0
x≤0
x+y≥0
得如圖所示的三角形區(qū)域,
三個頂點坐標為A(0,1),B(
1
2
,
1
2
),O(0,0)
將三個代入得x+2y+25的值分別為27,26.5,25,
直線u=x+2y+25過點 A(0,1)時,
z取得最大值為log327=3;
故選:A.
點評:在解決線性規(guī)劃的小題時,常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標⇒③將坐標逐一代入目標函數(shù)⇒④驗證,求出最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=e1-|x-m|-emx2的圖象與函數(shù)g(x)=x+1圖象有公共點,則正實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
x
和曲線y=x2圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C:
y2
16
-
x2
b2
=1(b>0)的上、下焦點分別為F1,F(xiàn)2,且雙曲線C的一條漸近線的一個方向向量
v
=(3,4),過下焦點F1的直線l交雙曲線的下支于A,B兩點,則|BF2|+AF2|的最小值為( 。
A、
19
2
B、
41
2
C、19
D、41

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,an≠0,當n≥2時,an-1-an2+an+1=0,Sn為{an}的前n項和,若S2k-1=46,則k等于(  )
A、14B、13C、12D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點P是上底面A1B1C1D1內(nèi)一動點,則三棱錐P-BCD的正視圖與側(cè)視圖的面積之比為( 。
A、1:1B、2:1
C、2:3D、3:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z1=2+i,z2=
1
3+i
在復(fù)平面上分別對應(yīng)點A,B,則∠AOB=(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線xcosθ+ysinθ+1=0與圓(x+1)2+(y-1)2=1相切,且θ為銳角,則該直線的斜率是(  )
A、1
B、-
3
C、-1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x(x-5)<0,x∈N},B={x|x2-3x+2=0,x∈R},則滿足條件B⊆C⊆A的集合C的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案