【題目】如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ);(Ⅲ).
【解析】
(Ⅰ)由中位線的性質(zhì)得出,再由線面平行的判定定理可證得平面;
(Ⅱ)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量,利用空間向量法可求出直線與平面所成角的正弦值;
(Ⅲ)求出平面的一個(gè)法向量,利用空間向量法可求得二面角的余弦值.
(Ⅰ)因?yàn)?/span>,,所以,
且平面,平面,則平面;
(Ⅱ)因?yàn)?/span>,,且,所以平面,
則以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系(如圖),
設(shè),可得,,,、、.
向量,,.
設(shè)為平面的法向量,則,即,
不妨令,可得為平面的一個(gè)法向量,
設(shè)直線與平面所成角為,
于是有,
因此,直線與平面所成角的正弦值為;
(Ⅲ)因?yàn)?/span>為平面的法向量,所以,
由圖形可知,二面角的平面角為銳角,它的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門(mén)為了對(duì)該市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了50人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這50人根據(jù)其滿意度評(píng)分值(百分制)按照,,……分成5組,根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示),計(jì)算,,,的值分別為( )
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 | 8 | 0.16 | |
第2組 | ■ | ||
第3組 | 20 | 0.40 | |
第4組 | ■ | 0.08 | |
第5組 | 2 | ||
合計(jì) | ■ | ■ |
A.16,0.04,0.032,0.004B.16,0.4,0.032,0.004
C.16,0.04,0.32,0.004D.12,0.04,0.032,0.04
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知橢圓過(guò)點(diǎn),,是兩個(gè)焦點(diǎn).以橢圓的上頂點(diǎn)為圓心作半徑為的圓,
(1)求橢圓的方程;
(2)存在過(guò)原點(diǎn)的直線,與圓分別交于,兩點(diǎn),與橢圓分別交于,兩點(diǎn)(點(diǎn)在線段上),使得,求圓半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),為函數(shù)在上的零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的長(zhǎng)方體,. 動(dòng)點(diǎn)在該長(zhǎng)方體外接球上,且,則點(diǎn)的軌跡長(zhǎng)度為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是偶函數(shù)的導(dǎo)函數(shù),在區(qū)間上的唯一零點(diǎn)為2,并且當(dāng)時(shí),,則使得成立的的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】成都七中為了解班級(jí)衛(wèi)生教育系列活動(dòng)的成效,對(duì)全校40個(gè)班級(jí)進(jìn)行了一次突擊班級(jí)衛(wèi)生量化打分檢查(滿分100分,最低分20分).根據(jù)檢查結(jié)果:得分在評(píng)定為“優(yōu)”,獎(jiǎng)勵(lì)3面小紅旗;得分在評(píng)定為“良”,獎(jiǎng)勵(lì)2面小紅旗;得分在評(píng)定為“中”,獎(jiǎng)勵(lì)1面小紅旗;得分在評(píng)定為“差”,不獎(jiǎng)勵(lì)小紅旗.已知統(tǒng)計(jì)結(jié)果的部分頻率分布直方圖如下圖:
(1)依據(jù)統(tǒng)計(jì)結(jié)果的部分頻率分布直方圖,求班級(jí)衛(wèi)生量化打分檢查得分的中位數(shù);
(2)學(xué)校用分層抽樣的方法,從評(píng)定等級(jí)為“優(yōu)”、“良”、“中”、“差”的班級(jí)中抽取10個(gè)班級(jí),再?gòu)倪@10個(gè)班級(jí)中隨機(jī)抽取2個(gè)班級(jí)進(jìn)行抽樣復(fù)核,記抽樣復(fù)核的2個(gè)班級(jí)獲得的獎(jiǎng)勵(lì)小紅旗面數(shù)和為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新能源汽車已經(jīng)走進(jìn)我們的生活,逐漸為大家所青睞.現(xiàn)在有某品牌的新能源汽車在甲市進(jìn)行預(yù)售,預(yù)售場(chǎng)面異;鸨,故該經(jīng)銷商采用競(jìng)價(jià)策略基本規(guī)則是:①競(jìng)價(jià)者都是網(wǎng)絡(luò)報(bào)價(jià),每個(gè)人并不知曉其他人的報(bào)價(jià),也不知道參與競(jìng)價(jià)的總?cè)藬?shù);②競(jìng)價(jià)采用“一月一期制”,當(dāng)月競(jìng)價(jià)時(shí)間截止后,系統(tǒng)根據(jù)當(dāng)期汽車配額,按照競(jìng)價(jià)人的出價(jià)從高到低分配名額.某人擬參加2020年6月份的汽車競(jìng)價(jià),他為了預(yù)測(cè)最低成交價(jià),根據(jù)網(wǎng)站的公告,統(tǒng)計(jì)了最近5個(gè)月參與競(jìng)價(jià)的人數(shù)(如下表)
月份 | 2020.01 | 2020.02 | 2020.03 | 2020.04 | 2020.05 |
月份編號(hào) | 1 | 2 | 3 | 4 | 5 |
競(jìng)拍人數(shù)(萬(wàn)人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集數(shù)據(jù)的散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型擬合競(jìng)價(jià)人數(shù)y(萬(wàn)人)與月份編號(hào)t之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求y關(guān)于t的線性回歸方程:,并預(yù)測(cè)2020年6月份(月份編號(hào)為6)參與競(jìng)價(jià)的人數(shù);
(2)某市場(chǎng)調(diào)研機(jī)構(gòu)對(duì)200位擬參加2020年6月份汽車競(jìng)價(jià)人員的報(bào)價(jià)進(jìn)行了一個(gè)抽樣調(diào)查,得到如表所示的頻數(shù)表:
報(bào)價(jià)區(qū)間(萬(wàn)元) | ||||||
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求這200位競(jìng)價(jià)人員報(bào)價(jià)的平均值和樣本方差s2(同一區(qū)間的報(bào)價(jià)用該價(jià)格區(qū)間的中點(diǎn)值代替)
(ii)假設(shè)所有參與競(jìng)價(jià)人員的報(bào)價(jià)X可視為服從正態(tài)分布且μ與σ2可分別由(i)中所示的樣本平均數(shù)及s2估計(jì).若2020年月6份計(jì)劃提供的新能源車輛數(shù)為3174,根據(jù)市場(chǎng)調(diào)研,最低成交價(jià)高于樣本平均數(shù),請(qǐng)你預(yù)測(cè)(需說(shuō)明理由)最低成交價(jià).
參考公式及數(shù)據(jù):
①回歸方程,其中
②
③若隨機(jī)變量X服從正態(tài)分布則
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com