【題目】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對(duì)該市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了50人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這50人根據(jù)其滿意度評(píng)分值(百分制)按照,,……分成5組,根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示),計(jì)算,,,的值分別為( )
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 | 8 | 0.16 | |
第2組 | ■ | ||
第3組 | 20 | 0.40 | |
第4組 | ■ | 0.08 | |
第5組 | 2 | ||
合計(jì) | ■ | ■ |
A.16,0.04,0.032,0.004B.16,0.4,0.032,0.004
C.16,0.04,0.32,0.004D.12,0.04,0.032,0.04
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)設(shè)函數(shù),,為曲線上任意兩個(gè)不同的點(diǎn),設(shè)直線的斜率為,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】音樂與數(shù)學(xué)有著密切的聯(lián)系,我國春秋時(shí)期有個(gè)著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼?/span>,得到“徵”;“徵”經(jīng)過一次“益”,頻率變?yōu)樵瓉淼?/span>,得到“商”;…….依次損益交替變化,獲得了“宮、徵、商、羽、角”五個(gè)音階.據(jù)此可推得( )
A.“宮、商、角”的頻率成等比數(shù)列B.“宮、徵、商”的頻率成等比數(shù)列
C.“商、羽、角”的頻率成等比數(shù)列D.“徵、商、羽”的頻率成等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“家校連心,立德樹人——重溫愛國故事,弘揚(yáng)愛國主義精神社會(huì)課堂”活動(dòng)中,王老師組建了一個(gè)微信群,群的成員由學(xué)生、家長(zhǎng)、老師和講解員共同組成.已知該微信群中男學(xué)生人數(shù)多于女生人數(shù),女學(xué)生人數(shù)多于家長(zhǎng)人數(shù),家長(zhǎng)人數(shù)多于教師人數(shù),教師人數(shù)多于講解員人數(shù),講解員人數(shù)的兩倍多于男生人數(shù).若把這5類人群的人數(shù)作為一組數(shù)據(jù),當(dāng)該微信群總?cè)藬?shù)取最小值時(shí),這組數(shù)據(jù)的中位數(shù)是( )
A.5B.6C.7D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:的左、右焦點(diǎn)分別為,,離心率為,過點(diǎn)的直線交橢圓于點(diǎn)、(不與左右頂點(diǎn)重合),連結(jié)、,已知周長(zhǎng)為8.
(1)求橢圓的方程;
(2)若直線的斜率為1,求的面積;
(3)設(shè),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四面體ABCD的邊長(zhǎng)等于2,點(diǎn)A,E位于平面BCD的兩側(cè),且,點(diǎn)P是AC的中點(diǎn).
(1)求證:平面
(2)求BP與平面所成的角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)公式an=﹣n2+8n﹣12,前n項(xiàng)和為Sn,若n>m,則Sn﹣Sm的最大值是( )
A.5B.10C.15D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com